{"title":"Quantifying and comparing the effects of human and organizational factors in electric maloperation accidents with HFACS–CatBoost and SHAP","authors":"Chuan Lin, Qifeng Xu, Yifan Huang","doi":"10.1002/hfm.20975","DOIUrl":null,"url":null,"abstract":"<p>The proportion of electric maloperation accidents (EMAs) in substations caused by human and organizational factors (HOFs) has gradually increased. Although there has been some research into the factors affecting EMAs in substations, the available results are insufficient to support the interpretation of HOFs in EMAs. This article explores the relationships between the HOFs and EMAs using Human Factors Analysis and Classification System-gradient boosting with categorical features support (HFACS–CatBoost) and Shapley Additive exPlanation (SHAP) methods. First, the HFACS framework was introduced to identify 135 EMAs in the Southern Power Grid risk causation. CatBoost was used to construct an accident classification model to analyze the important relationship between accidents and HOFs and to compare and analyze with the extreme gradient boosting (XGBoost) and the binary logistic regression (BLR) to verify the superiority of CatBoost. Finally, to solve the problem of inadequate interpretation of the CatBoost black-box model, the SHAP value plot was applied to express the contribution degree relationship between accidents and HOFs. The results show that the above method can explore and explain the importance and contribution of HOFs in EMAs. And from this, it is concluded that poor psychological state, poor communication and coordination, inadequate supervision, and inadequate training and education are highly correlated with the occurrence of EMAs. The findings will help substation operations and maintenance staff to develop safety measures to address the confusion of HOFs in substations and prevent the occurrence of EMAs.</p>","PeriodicalId":55048,"journal":{"name":"Human Factors and Ergonomics in Manufacturing & Service Industries","volume":"33 2","pages":"164-183"},"PeriodicalIF":2.2000,"publicationDate":"2022-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Factors and Ergonomics in Manufacturing & Service Industries","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hfm.20975","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 1
Abstract
The proportion of electric maloperation accidents (EMAs) in substations caused by human and organizational factors (HOFs) has gradually increased. Although there has been some research into the factors affecting EMAs in substations, the available results are insufficient to support the interpretation of HOFs in EMAs. This article explores the relationships between the HOFs and EMAs using Human Factors Analysis and Classification System-gradient boosting with categorical features support (HFACS–CatBoost) and Shapley Additive exPlanation (SHAP) methods. First, the HFACS framework was introduced to identify 135 EMAs in the Southern Power Grid risk causation. CatBoost was used to construct an accident classification model to analyze the important relationship between accidents and HOFs and to compare and analyze with the extreme gradient boosting (XGBoost) and the binary logistic regression (BLR) to verify the superiority of CatBoost. Finally, to solve the problem of inadequate interpretation of the CatBoost black-box model, the SHAP value plot was applied to express the contribution degree relationship between accidents and HOFs. The results show that the above method can explore and explain the importance and contribution of HOFs in EMAs. And from this, it is concluded that poor psychological state, poor communication and coordination, inadequate supervision, and inadequate training and education are highly correlated with the occurrence of EMAs. The findings will help substation operations and maintenance staff to develop safety measures to address the confusion of HOFs in substations and prevent the occurrence of EMAs.
期刊介绍:
The purpose of Human Factors and Ergonomics in Manufacturing & Service Industries is to facilitate discovery, integration, and application of scientific knowledge about human aspects of manufacturing, and to provide a forum for worldwide dissemination of such knowledge for its application and benefit to manufacturing industries. The journal covers a broad spectrum of ergonomics and human factors issues with a focus on the design, operation and management of contemporary manufacturing systems, both in the shop floor and office environments, in the quest for manufacturing agility, i.e. enhancement and integration of human skills with hardware performance for improved market competitiveness, management of change, product and process quality, and human-system reliability. The inter- and cross-disciplinary nature of the journal allows for a wide scope of issues relevant to manufacturing system design and engineering, human resource management, social, organizational, safety, and health issues. Examples of specific subject areas of interest include: implementation of advanced manufacturing technology, human aspects of computer-aided design and engineering, work design, compensation and appraisal, selection training and education, labor-management relations, agile manufacturing and virtual companies, human factors in total quality management, prevention of work-related musculoskeletal disorders, ergonomics of workplace, equipment and tool design, ergonomics programs, guides and standards for industry, automation safety and robot systems, human skills development and knowledge enhancing technologies, reliability, and safety and worker health issues.