Avoiding Medvedev reductions inside a linear order

Pub Date : 2023-07-24 DOI:10.1002/malq.202200059
Noah Schweber
{"title":"Avoiding Medvedev reductions inside a linear order","authors":"Noah Schweber","doi":"10.1002/malq.202200059","DOIUrl":null,"url":null,"abstract":"<p>While every endpointed interval <i>I</i> in a linear order <i>J</i> is, considered as a linear order in its own right, trivially Muchnik-reducible to <i>J</i> itself, this fails for Medvedev-reductions. We construct an extreme example of this: a linear order in which no endpointed interval is Medvedev-reducible to any other, even allowing parameters, except when the two intervals have finite difference. We also construct a scattered linear order which has many endpointed intervals Medvedev-incomparable to itself; the only other known construction of such a linear order yields an ordinal of extremely high complexity, whereas this construction produces a low-level-arithmetic example. Additionally, the constructions here are “coarse” in the sense that they lift to other uniform reducibility notions in place of Medvedev reducibility itself.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/malq.202200059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

While every endpointed interval I in a linear order J is, considered as a linear order in its own right, trivially Muchnik-reducible to J itself, this fails for Medvedev-reductions. We construct an extreme example of this: a linear order in which no endpointed interval is Medvedev-reducible to any other, even allowing parameters, except when the two intervals have finite difference. We also construct a scattered linear order which has many endpointed intervals Medvedev-incomparable to itself; the only other known construction of such a linear order yields an ordinal of extremely high complexity, whereas this construction produces a low-level-arithmetic example. Additionally, the constructions here are “coarse” in the sense that they lift to other uniform reducibility notions in place of Medvedev reducibility itself.

分享
查看原文
避免线性秩序中的梅德韦杰夫减少
虽然线性阶J中的每个端点区间I都被认为是线性阶,但Muchnik平凡地可约为J本身,这对于Medvedev约简是失败的。我们构造了一个极端的例子:一个线性阶,其中没有端点区间是Medvedev可约为任何其他区间的,甚至允许参数,除非两个区间有有限差。我们还构造了一个离散线性阶,它有许多自己无法比拟的端点区间Medvedev;这种线性阶的唯一其他已知构造产生了一个复杂度极高的序数,而这种构造产生了低级别的算术示例。此外,这里的结构是“粗糙的”,因为它们提升到了其他一致可约性概念,而不是梅德韦杰夫可约性本身。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信