Topological duality for orthomodular lattices

Pub Date : 2023-07-24 DOI:10.1002/malq.202200044
Joseph McDonald, Katalin Bimbó
{"title":"Topological duality for orthomodular lattices","authors":"Joseph McDonald,&nbsp;Katalin Bimbó","doi":"10.1002/malq.202200044","DOIUrl":null,"url":null,"abstract":"<p>A class of ordered relational topological spaces is described, which we call <i>orthomodular spaces</i>. Our construction of these spaces involves adding a topology to the class of orthomodular frames introduced by Hartonas, along the lines of Bimbó's topologization of the class of orthoframes employed by Goldblatt in his representation of ortholattices. We then prove that the category of orthomodular lattices and homomorphisms is dually equivalent to the category of orthomodular spaces and certain continuous frame morphisms, which we call <i>continuous weak p-morphisms</i>. It is well-known that orthomodular lattices provide an algebraic semantics for the quantum logic <math>\n <semantics>\n <mi>Q</mi>\n <annotation>$\\mathcal {Q}$</annotation>\n </semantics></math>. Hence, as an application of our duality, we develop a topological semantics for <math>\n <semantics>\n <mi>Q</mi>\n <annotation>$\\mathcal {Q}$</annotation>\n </semantics></math> using orthomodular spaces and prove soundness and completeness.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/malq.202200044","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/malq.202200044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A class of ordered relational topological spaces is described, which we call orthomodular spaces. Our construction of these spaces involves adding a topology to the class of orthomodular frames introduced by Hartonas, along the lines of Bimbó's topologization of the class of orthoframes employed by Goldblatt in his representation of ortholattices. We then prove that the category of orthomodular lattices and homomorphisms is dually equivalent to the category of orthomodular spaces and certain continuous frame morphisms, which we call continuous weak p-morphisms. It is well-known that orthomodular lattices provide an algebraic semantics for the quantum logic Q $\mathcal {Q}$ . Hence, as an application of our duality, we develop a topological semantics for Q $\mathcal {Q}$ using orthomodular spaces and prove soundness and completeness.

Abstract Image

分享
查看原文
正交模格的拓扑对偶
描述了一类有序关系拓扑空间,我们称之为正交模空间。我们对这些空间的构造涉及将拓扑添加到Hartonas引入的一类正交模框架中,沿着Goldblatt在其正交格表示中使用的一类正模框架的Bimbó拓扑化的路线。然后我们证明了正交模格和同态的范畴对偶等价于正交模空间和某些连续框架态射的范畴,我们称之为连续弱p-态射。众所周知,正交模格为量子逻辑Q$\mathcal{Q}$提供了代数语义。因此,作为对偶的一个应用,我们使用正交模空间开发了Q$\mathcal{Q}$的拓扑语义,并证明了其稳健性和完备性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信