Khondoker Ziaul Islam, David Murray, Dean Diepeveen, Michael G. K. Jones, Ferdous Sohel
{"title":"Machine learning-based LoRa localisation using multiple received signal features","authors":"Khondoker Ziaul Islam, David Murray, Dean Diepeveen, Michael G. K. Jones, Ferdous Sohel","doi":"10.1049/wss2.12063","DOIUrl":null,"url":null,"abstract":"<p>Low-power localisation systems are crucial for machine-to-machine communication technologies. This article investigates LoRa technology for localisation using multiple features of the received signal, such as Received Signal Strength Indicator (RSSI), Spreading Factors (SF), and Signal to Noise Ratio (SNR). A novel range-based technique to estimate the distance of a target node from a LoRa gateway using machine-learning models that incorporates SF, SNR, and RSSI to train the models is proposed. A modified trilateration approach is then used to localise the target node from three gateways. Our experiment used three LoRaWAN gateways and two sensor nodes, on a sports oval with an approximate area coverage of 30,000 square metres. The authors also used a public LoRaWAN dataset to build a model test the proposed method and compare both range-based distance mapping with trilateration and fingerprint-based direct location estimation techniques. Our method achieved an average distance error of 43.97 m on our experimental dataset. The results show that the combination of RSSI, SNR, and SF-based distance mapping provides ∼10% improvement on ranging accuracy and 26.58% higher accuracy for trilateration-based localisation when compared with just using RSSI. Our method also achieved 50% superior localisation accuracy with fingerprint-based direct location estimation approaches.</p>","PeriodicalId":51726,"journal":{"name":"IET Wireless Sensor Systems","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2023-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/wss2.12063","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Wireless Sensor Systems","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/wss2.12063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 3
Abstract
Low-power localisation systems are crucial for machine-to-machine communication technologies. This article investigates LoRa technology for localisation using multiple features of the received signal, such as Received Signal Strength Indicator (RSSI), Spreading Factors (SF), and Signal to Noise Ratio (SNR). A novel range-based technique to estimate the distance of a target node from a LoRa gateway using machine-learning models that incorporates SF, SNR, and RSSI to train the models is proposed. A modified trilateration approach is then used to localise the target node from three gateways. Our experiment used three LoRaWAN gateways and two sensor nodes, on a sports oval with an approximate area coverage of 30,000 square metres. The authors also used a public LoRaWAN dataset to build a model test the proposed method and compare both range-based distance mapping with trilateration and fingerprint-based direct location estimation techniques. Our method achieved an average distance error of 43.97 m on our experimental dataset. The results show that the combination of RSSI, SNR, and SF-based distance mapping provides ∼10% improvement on ranging accuracy and 26.58% higher accuracy for trilateration-based localisation when compared with just using RSSI. Our method also achieved 50% superior localisation accuracy with fingerprint-based direct location estimation approaches.
期刊介绍:
IET Wireless Sensor Systems is aimed at the growing field of wireless sensor networks and distributed systems, which has been expanding rapidly in recent years and is evolving into a multi-billion dollar industry. The Journal has been launched to give a platform to researchers and academics in the field and is intended to cover the research, engineering, technological developments, innovative deployment of distributed sensor and actuator systems. Topics covered include, but are not limited to theoretical developments of: Innovative Architectures for Smart Sensors;Nano Sensors and Actuators Unstructured Networking; Cooperative and Clustering Distributed Sensors; Data Fusion for Distributed Sensors; Distributed Intelligence in Distributed Sensors; Energy Harvesting for and Lifetime of Smart Sensors and Actuators; Cross-Layer Design and Layer Optimisation in Distributed Sensors; Security, Trust and Dependability of Distributed Sensors. The Journal also covers; Innovative Services and Applications for: Monitoring: Health, Traffic, Weather and Toxins; Surveillance: Target Tracking and Localization; Observation: Global Resources and Geological Activities (Earth, Forest, Mines, Underwater); Industrial Applications of Distributed Sensors in Green and Agile Manufacturing; Sensor and RFID Applications of the Internet-of-Things ("IoT"); Smart Metering; Machine-to-Machine Communications.