Development and deployment of a long-term aquatic eddy covariance system

IF 2.1 3区 地球科学 Q2 LIMNOLOGY
Jeff Coogan, Matthew H. Long
{"title":"Development and deployment of a long-term aquatic eddy covariance system","authors":"Jeff Coogan,&nbsp;Matthew H. Long","doi":"10.1002/lom3.10564","DOIUrl":null,"url":null,"abstract":"<p>The aquatic eddy covariance (AEC) technique is a versatile tool for understanding benthic fluxes, and calculating primary production, respiration, and net ecosystem metabolism rates of benthic communities. A limitation for researchers has been the length of deployments where the major constraints have primarily been sensor breakage and degradation over time and battery consumption. This paper evaluates the design and deployment of a long-term eddy covariance system (LECS) that was deployed in a temperate seagrass meadow for 6 months that resulted in reliable data 79% of the time. The system consisted of a fixed bottom lander that measured the AEC and a surface buoy that transmitted real time data and provided solar power. This study found a gradual reduction in sensor response time, likely due to fouling, that reduced the response time from 1 to 22 s and resulted in a normalized root square mean error of 8% when comparing the LECS with a second short-term AEC system. New spectral analysis techniques allow for these changes in sensor response time to be monitored in real time so the sensor can be replaced or cleaned as needed. This ensures future deployments will be able to collect high-quality data and allow for long-term analyses of benthic fluxes using the new technology and analyses of the presented LECS.</p>","PeriodicalId":18145,"journal":{"name":"Limnology and Oceanography: Methods","volume":"21 9","pages":"552-562"},"PeriodicalIF":2.1000,"publicationDate":"2023-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/lom3.10564","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Limnology and Oceanography: Methods","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/lom3.10564","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"LIMNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The aquatic eddy covariance (AEC) technique is a versatile tool for understanding benthic fluxes, and calculating primary production, respiration, and net ecosystem metabolism rates of benthic communities. A limitation for researchers has been the length of deployments where the major constraints have primarily been sensor breakage and degradation over time and battery consumption. This paper evaluates the design and deployment of a long-term eddy covariance system (LECS) that was deployed in a temperate seagrass meadow for 6 months that resulted in reliable data 79% of the time. The system consisted of a fixed bottom lander that measured the AEC and a surface buoy that transmitted real time data and provided solar power. This study found a gradual reduction in sensor response time, likely due to fouling, that reduced the response time from 1 to 22 s and resulted in a normalized root square mean error of 8% when comparing the LECS with a second short-term AEC system. New spectral analysis techniques allow for these changes in sensor response time to be monitored in real time so the sensor can be replaced or cleaned as needed. This ensures future deployments will be able to collect high-quality data and allow for long-term analyses of benthic fluxes using the new technology and analyses of the presented LECS.

Abstract Image

长期水涡协方差系统的开发和部署
水生涡度协方差(AEC)技术是了解底栖生物通量、计算底栖生物群落初级生产力、呼吸和净生态系统代谢率的通用工具。研究人员的一个限制是部署的长度,其中主要的限制因素是传感器损坏和随时间退化以及电池消耗。本文评估了一个长期涡协方差系统(LECS)的设计和部署,该系统在温带海草草地上部署了6年 月,79%的时间产生可靠的数据。该系统由一个测量AEC的固定底部着陆器和一个传输实时数据并提供太阳能的表面浮标组成。这项研究发现,传感器响应时间逐渐减少,可能是由于结垢,从而将响应时间从1减少到22 s,并且当将LECS与第二短期AEC系统进行比较时导致8%的归一化均方根误差。新的光谱分析技术允许实时监测传感器响应时间的这些变化,从而可以根据需要更换或清洁传感器。这确保了未来的部署将能够收集高质量的数据,并允许使用新技术和现有LECS的分析对海底通量进行长期分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.80
自引率
3.70%
发文量
56
审稿时长
3 months
期刊介绍: Limnology and Oceanography: Methods (ISSN 1541-5856) is a companion to ASLO''s top-rated journal Limnology and Oceanography, and articles are held to the same high standards. In order to provide the most rapid publication consistent with high standards, Limnology and Oceanography: Methods appears in electronic format only, and the entire submission and review system is online. Articles are posted as soon as they are accepted and formatted for publication. Limnology and Oceanography: Methods will consider manuscripts whose primary focus is methodological, and that deal with problems in the aquatic sciences. Manuscripts may present new measurement equipment, techniques for analyzing observations or samples, methods for understanding and interpreting information, analyses of metadata to examine the effectiveness of approaches, invited and contributed reviews and syntheses, and techniques for communicating and teaching in the aquatic sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信