Optimal Hardy-weights for elliptic operators with mixed boundary conditions

IF 0.8 3区 数学 Q2 MATHEMATICS
Mathematika Pub Date : 2023-09-28 DOI:10.1112/mtk.12226
Yehuda Pinchover, Idan Versano
{"title":"Optimal Hardy-weights for elliptic operators with mixed boundary conditions","authors":"Yehuda Pinchover,&nbsp;Idan Versano","doi":"10.1112/mtk.12226","DOIUrl":null,"url":null,"abstract":"<p>We construct families of optimal Hardy-weights for a subcritical linear second-order elliptic operator <math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>P</mi>\n <mo>,</mo>\n <mi>B</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(P,B)$</annotation>\n </semantics></math> with degenerate mixed boundary conditions. By an optimal Hardy-weight for a subcritical operator we mean a nonzero nonnegative weight function <i>W</i> such that <math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>P</mi>\n <mo>−</mo>\n <mi>W</mi>\n <mo>,</mo>\n <mi>B</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(P-W,B)$</annotation>\n </semantics></math> is critical, and null-critical with respect to <i>W</i>. Our results rely on a recently developed criticality theory for positive solutions of the corresponding mixed boundary value problem.</p>","PeriodicalId":18463,"journal":{"name":"Mathematika","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/mtk.12226","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematika","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/mtk.12226","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We construct families of optimal Hardy-weights for a subcritical linear second-order elliptic operator ( P , B ) $(P,B)$ with degenerate mixed boundary conditions. By an optimal Hardy-weight for a subcritical operator we mean a nonzero nonnegative weight function W such that ( P W , B ) $(P-W,B)$ is critical, and null-critical with respect to W. Our results rely on a recently developed criticality theory for positive solutions of the corresponding mixed boundary value problem.

Abstract Image

混合边界条件下椭圆算子的最优Hardy权
我们构造了具有退化混合边界条件的次临界线性二阶椭圆算子(P,B)$(P,B)$的最优Hardy权族。次临界算子的最优Hardy权是指非零非负权函数W,使得(P−W,B)$(P-W,B,和关于W的零临界。我们的结果依赖于最近发展的临界理论,用于相应的混合边值问题的正解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematika
Mathematika MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.40
自引率
0.00%
发文量
60
审稿时长
>12 weeks
期刊介绍: Mathematika publishes both pure and applied mathematical articles and has done so continuously since its founding by Harold Davenport in the 1950s. The traditional emphasis has been towards the purer side of mathematics but applied mathematics and articles addressing both aspects are equally welcome. The journal is published by the London Mathematical Society, on behalf of its owner University College London, and will continue to publish research papers of the highest mathematical quality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信