A criterion for density of the isoperiodic leaves in rank one affine invariant orbifolds

Pub Date : 2022-12-28 DOI:10.1112/topo.12279
Florent Ygouf
{"title":"A criterion for density of the isoperiodic leaves in rank one affine invariant orbifolds","authors":"Florent Ygouf","doi":"10.1112/topo.12279","DOIUrl":null,"url":null,"abstract":"<p>We define on any affine invariant orbifold <math>\n <semantics>\n <mi>M</mi>\n <annotation>$\\mathcal {M}$</annotation>\n </semantics></math> a foliation <math>\n <semantics>\n <msup>\n <mi>F</mi>\n <mi>M</mi>\n </msup>\n <annotation>$\\mathcal {F}^{\\mathcal {M}}$</annotation>\n </semantics></math> that generalizes the isoperiodic foliation on strata of the moduli space of translation surfaces and study the dynamics of its leaves in the rank 1 case. We establish a criterion that ensures the density of the leaves and provide two applications of this criterion. The first one is a classification of the dynamical behavior of the leaves of <math>\n <semantics>\n <msup>\n <mi>F</mi>\n <mi>M</mi>\n </msup>\n <annotation>$\\mathcal {F}^{\\mathcal {M}}$</annotation>\n </semantics></math> when <math>\n <semantics>\n <mi>M</mi>\n <annotation>$\\mathcal {M}$</annotation>\n </semantics></math> is a connected component of a Prym eigenform locus in genus 2 or 3 and the second provides the first examples of dense isoperiodic leaves in the stratum <math>\n <semantics>\n <mrow>\n <mi>H</mi>\n <mo>(</mo>\n <mn>2</mn>\n <mo>,</mo>\n <mn>1</mn>\n <mo>,</mo>\n <mn>1</mn>\n <mo>)</mo>\n </mrow>\n <annotation>$\\mathcal {H}(2,1,1)$</annotation>\n </semantics></math>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/topo.12279","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/topo.12279","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We define on any affine invariant orbifold M $\mathcal {M}$ a foliation F M $\mathcal {F}^{\mathcal {M}}$ that generalizes the isoperiodic foliation on strata of the moduli space of translation surfaces and study the dynamics of its leaves in the rank 1 case. We establish a criterion that ensures the density of the leaves and provide two applications of this criterion. The first one is a classification of the dynamical behavior of the leaves of F M $\mathcal {F}^{\mathcal {M}}$ when M $\mathcal {M}$ is a connected component of a Prym eigenform locus in genus 2 or 3 and the second provides the first examples of dense isoperiodic leaves in the stratum H ( 2 , 1 , 1 ) $\mathcal {H}(2,1,1)$ .

Abstract Image

分享
查看原文
一阶仿射不变轨道中等周期叶密度的一个判据
我们在任何仿射不变的orbifold M$\mathcal{M}$上定义了一个叶理FM$\math cal{F}^{\mathcal}}$,它推广了平移面的模空间的层上的等周期叶理,并且对1级叶片的动态特性进行了研究。我们建立了一个确保叶片密度的标准,并提供了该标准的两个应用。第一个是当M$\mathcal{M}$是亏格2或3中Prym本征型轨迹的连通分量并且第二个例子提供了层H(2,1,1)$\mathcal{H}(2,1,1)$中稠密等周期叶的第一个例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信