Tribo-ferro-optoelectronic neuromorphic transistor of α-In2Se3

Brain-X Pub Date : 2023-07-18 DOI:10.1002/brx2.24
Zhenyu Feng, Jinran Yu, Yichen Wei, Yifei Wang, Bobo Tian, Yonghai Li, Liuqi Cheng, Zhong Lin Wang, Qijun Sun
{"title":"Tribo-ferro-optoelectronic neuromorphic transistor of α-In2Se3","authors":"Zhenyu Feng,&nbsp;Jinran Yu,&nbsp;Yichen Wei,&nbsp;Yifei Wang,&nbsp;Bobo Tian,&nbsp;Yonghai Li,&nbsp;Liuqi Cheng,&nbsp;Zhong Lin Wang,&nbsp;Qijun Sun","doi":"10.1002/brx2.24","DOIUrl":null,"url":null,"abstract":"<p>Inspired by biological neural networks, the fabrication of artificial neuromorphic systems with multimodal perception capacity shows promises in overcoming the “von Neumann bottleneck” and takes advantage of the efficient perception and computation of diverse types of signals. Here, we combine a triboelectric nanogenerator with an <i>α</i>-phase indium selenide (<i>α</i>-In<sub>2</sub>Se<sub>3</sub>) optoelectronic synaptic transistor to construct a tribo-ferro-optoelectronic artificial neuromorphic device with multimodal plasticity. Based on the excellent ferroelectric and optoelectronic characteristics of the <i>α</i>-In<sub>2</sub>Se<sub>3</sub> channel, typical synaptic behaviors (e.g., pair-pulse facilitation and short-term/long-term plasticity) are successfully simulated in response to the synergistic effect of mechanical and optical stimuli. The interaction of mechanical displacement and light illumination enables heterosynaptic plasticity and spatiotemporal dynamic logic. Furthermore, multiple Boolean logical functions and associative learning behaviors are successfully implemented using the paired stimuli of displacement pulses and light pulses. The proposed tribo-ferro-optoelectronic artificial neuromorphic devices have great potential for application in interactive neural networks and next-generation artificial intelligence.</p>","PeriodicalId":94303,"journal":{"name":"Brain-X","volume":"1 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/brx2.24","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain-X","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/brx2.24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Inspired by biological neural networks, the fabrication of artificial neuromorphic systems with multimodal perception capacity shows promises in overcoming the “von Neumann bottleneck” and takes advantage of the efficient perception and computation of diverse types of signals. Here, we combine a triboelectric nanogenerator with an α-phase indium selenide (α-In2Se3) optoelectronic synaptic transistor to construct a tribo-ferro-optoelectronic artificial neuromorphic device with multimodal plasticity. Based on the excellent ferroelectric and optoelectronic characteristics of the α-In2Se3 channel, typical synaptic behaviors (e.g., pair-pulse facilitation and short-term/long-term plasticity) are successfully simulated in response to the synergistic effect of mechanical and optical stimuli. The interaction of mechanical displacement and light illumination enables heterosynaptic plasticity and spatiotemporal dynamic logic. Furthermore, multiple Boolean logical functions and associative learning behaviors are successfully implemented using the paired stimuli of displacement pulses and light pulses. The proposed tribo-ferro-optoelectronic artificial neuromorphic devices have great potential for application in interactive neural networks and next-generation artificial intelligence.

Abstract Image

α-In2Se3的三铁光电子神经形态晶体管
受生物神经网络的启发,具有多模式感知能力的人工神经形态系统的制造有望克服“冯·诺依曼瓶颈”,并利用对不同类型信号的有效感知和计算。在这里,我们将摩擦电纳米发电机与α相硒化铟(α-In2Se3)光电突触晶体管相结合,构建了一种具有多峰可塑性的摩擦铁光电人工神经形态装置。基于α-In2Se3通道优异的铁电和光电特性,成功模拟了典型的突触行为(如对脉冲促进和短期/长期可塑性),以响应机械和光学刺激的协同效应。机械位移和光照的相互作用使异突触具有可塑性和时空动态逻辑。此外,利用位移脉冲和光脉冲的配对刺激,成功地实现了多个布尔逻辑函数和联想学习行为。所提出的摩擦铁光电人工神经形态装置在交互式神经网络和下一代人工智能中具有巨大的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信