Franco M. Valdez Ovallez, Rodrigo Gómez Alés, Vanesa Astudillo, Mariela Córdoba, Gustavo Fava, Rodrigo Acosta, Graciela Blanco, José Villavicencio, Juan Carlos Acosta
{"title":"Thermal biology and locomotor performance of the Andean lizard Liolaemus fitzgeraldi (Liolaemidae) in Argentina","authors":"Franco M. Valdez Ovallez, Rodrigo Gómez Alés, Vanesa Astudillo, Mariela Córdoba, Gustavo Fava, Rodrigo Acosta, Graciela Blanco, José Villavicencio, Juan Carlos Acosta","doi":"10.1111/azo.12440","DOIUrl":null,"url":null,"abstract":"<p>Ectotherms thermoregulate to maintain their body temperature within the optimal range needed for performing vital functions. The effect of climate change on lizards has been studied as regards the sensitivity of locomotor performance to environmental temperatures. We studied thermoregulatory efficiency and locomotor performance for <i>Liolaemus fitzgeraldi</i> in the Central Andes of Argentina. We determined body temperature, micro-environmental temperatures and operative temperatures in the field. In the laboratory, we measured preferred temperatures and calculated the index of thermoregulatory efficiency. We estimated the thermal sensitivity of locomotion by measuring sprint speed (initial velocity and long sprint) and endurance at five different body temperatures. Body temperature was not associated with either micro-environmental temperature, nor did it show differences with preferred temperatures. Thermoregulatory efficiency was moderate (0.61). Initial velocity and long sprint trials showed differences at different temperatures; however, endurance did not. Moreover, the optimal temperatures for the performance trials showed no significant differences among themselves. We conclude that <i>Liolaemus fitzgeraldi</i> has thermal sensitivity in locomotor performance with respect to body temperature and that it is an eurythermic lizard that experiences a large variation in body temperature and that has thermal flexibility in the cold.</p>","PeriodicalId":50945,"journal":{"name":"Acta Zoologica","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2022-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Zoologica","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/azo.12440","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Ectotherms thermoregulate to maintain their body temperature within the optimal range needed for performing vital functions. The effect of climate change on lizards has been studied as regards the sensitivity of locomotor performance to environmental temperatures. We studied thermoregulatory efficiency and locomotor performance for Liolaemus fitzgeraldi in the Central Andes of Argentina. We determined body temperature, micro-environmental temperatures and operative temperatures in the field. In the laboratory, we measured preferred temperatures and calculated the index of thermoregulatory efficiency. We estimated the thermal sensitivity of locomotion by measuring sprint speed (initial velocity and long sprint) and endurance at five different body temperatures. Body temperature was not associated with either micro-environmental temperature, nor did it show differences with preferred temperatures. Thermoregulatory efficiency was moderate (0.61). Initial velocity and long sprint trials showed differences at different temperatures; however, endurance did not. Moreover, the optimal temperatures for the performance trials showed no significant differences among themselves. We conclude that Liolaemus fitzgeraldi has thermal sensitivity in locomotor performance with respect to body temperature and that it is an eurythermic lizard that experiences a large variation in body temperature and that has thermal flexibility in the cold.
期刊介绍:
Published regularly since 1920, Acta Zoologica has retained its position as one of the world''s leading journals in the field of animal organization, development, structure and function. Each issue publishes original research of interest to zoologists and physiologists worldwide, in the field of animal structure (from the cellular to the organismic level) and development with emphasis on functional, comparative and phylogenetic aspects. Occasional review articles are also published, as well as book reviews.