Field evaluation of phosphorus limitation in drinking water biofilters

Madison Rasmus, Asher E. Keithley, Bryant A. Chambers, Grace Zhou, Greg Pope, Eric R. V. Dickenson, Bradley Bzdyra, Alisa Lu, Kerry A. Kinney, Mary Jo Kirisits
{"title":"Field evaluation of phosphorus limitation in drinking water biofilters","authors":"Madison Rasmus,&nbsp;Asher E. Keithley,&nbsp;Bryant A. Chambers,&nbsp;Grace Zhou,&nbsp;Greg Pope,&nbsp;Eric R. V. Dickenson,&nbsp;Bradley Bzdyra,&nbsp;Alisa Lu,&nbsp;Kerry A. Kinney,&nbsp;Mary Jo Kirisits","doi":"10.1002/aws2.1317","DOIUrl":null,"url":null,"abstract":"<p>Hydraulic performance issues in drinking-water biofilters have sometimes been associated with phosphorus limitation and increased production of extracellular polymeric substances in previous bench-scale studies. However, field studies utilizing phosphorus supplementation to improve biofilter hydraulic performance have produced mixed results. Here, we determined the ratio of activities for phosphatase to glycosidase (PHO:GLY), which are enzymes involved in acquiring orthophosphate and biodegradable organic carbon from complex organic substrates, to assess phosphorus limitation in 21 pilot- and full-scale biofilters. Supplementation of the pilot-scale biofilter influents with 37 μg/L orthophosphate-P reduced the PHO:GLY from 1.8–40.3 (mean 14.8) to 0.3–15.9 (mean 5.3), demonstrating that increased orthophosphate availability decreases PHO:GLY. In the absence of phosphorus supplementation, the PHO:GLY of the pilot- and full-scale biofilters ranged from 0.3 to 40.3 (mean 10.1), and no hydraulic performance issues were noted. Thus, severe phosphorus limitation appears uncommon in the field, suggesting that phosphorus supplementation is unlikely to improve hydraulic performance in typical drinking water biofilters.</p>","PeriodicalId":101301,"journal":{"name":"AWWA water science","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aws2.1317","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AWWA water science","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aws2.1317","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Hydraulic performance issues in drinking-water biofilters have sometimes been associated with phosphorus limitation and increased production of extracellular polymeric substances in previous bench-scale studies. However, field studies utilizing phosphorus supplementation to improve biofilter hydraulic performance have produced mixed results. Here, we determined the ratio of activities for phosphatase to glycosidase (PHO:GLY), which are enzymes involved in acquiring orthophosphate and biodegradable organic carbon from complex organic substrates, to assess phosphorus limitation in 21 pilot- and full-scale biofilters. Supplementation of the pilot-scale biofilter influents with 37 μg/L orthophosphate-P reduced the PHO:GLY from 1.8–40.3 (mean 14.8) to 0.3–15.9 (mean 5.3), demonstrating that increased orthophosphate availability decreases PHO:GLY. In the absence of phosphorus supplementation, the PHO:GLY of the pilot- and full-scale biofilters ranged from 0.3 to 40.3 (mean 10.1), and no hydraulic performance issues were noted. Thus, severe phosphorus limitation appears uncommon in the field, suggesting that phosphorus supplementation is unlikely to improve hydraulic performance in typical drinking water biofilters.

饮用水生物滤池磷限值的现场评价
在以前的实验室规模研究中,饮用水生物过滤器的水力性能问题有时与磷限制和细胞外聚合物产量增加有关。然而,利用补磷改善生物滤池水力性能的实地研究产生了喜忧参半的结果。在这里,我们确定了磷酸酶与糖苷酶(PHO:GLY)的活性比率,以评估21个中试和全尺寸生物滤池中的磷限制。用37补充中试规模的生物过滤器影响因素 μg/L正磷酸盐-P使PHO:GLY从1.8–40.3(平均14.8)降至0.3–15.9(平均5.3),表明正磷酸盐有效性的增加降低了PHO:GLY。在没有补充磷的情况下,中试和全尺寸生物滤池的PHO:GLY范围为0.3至40.3(平均10.1),没有发现水力性能问题。因此,严重的磷限制在现场并不常见,这表明磷补充不太可能改善典型饮用水生物滤池的水力性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信