Influence of water saturation on the compressive strength of concrete under high strain rates

Oliver Mosig, Birgit Beckmann, Manfred Curbach
{"title":"Influence of water saturation on the compressive strength of concrete under high strain rates","authors":"Oliver Mosig,&nbsp;Birgit Beckmann,&nbsp;Manfred Curbach","doi":"10.1002/cend.202200015","DOIUrl":null,"url":null,"abstract":"<p>In this study, the influence of different water saturation achieved by different storage conditions on the static and dynamic compressive strength of three different concretes were investigated. The specimens were first dried then water-saturated and tested both under static and impact loading. The impact tests were carried out in a split Hopkinson bar. Depending on the concrete strength class, increases in the compressive strength of 200%–300% at strain rates in the range of 90–160 1/s were observed. Compared to storage under ambient conditions, the compressive strength decreases as a result of drying due to microcrack formation. Furthermore, the concretes compressive strengths of water-saturated specimens decrease compared to dry specimens. This decrease was observed under both static and impact loading and is independent of the strain rate. The failure of the dry specimens was more explosive with an increased number of cracks compared to water-saturated specimens.</p>","PeriodicalId":100248,"journal":{"name":"Civil Engineering Design","volume":"5 3-4","pages":"39-45"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cend.202200015","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Civil Engineering Design","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cend.202200015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, the influence of different water saturation achieved by different storage conditions on the static and dynamic compressive strength of three different concretes were investigated. The specimens were first dried then water-saturated and tested both under static and impact loading. The impact tests were carried out in a split Hopkinson bar. Depending on the concrete strength class, increases in the compressive strength of 200%–300% at strain rates in the range of 90–160 1/s were observed. Compared to storage under ambient conditions, the compressive strength decreases as a result of drying due to microcrack formation. Furthermore, the concretes compressive strengths of water-saturated specimens decrease compared to dry specimens. This decrease was observed under both static and impact loading and is independent of the strain rate. The failure of the dry specimens was more explosive with an increased number of cracks compared to water-saturated specimens.

Abstract Image

高应变率下水饱和度对混凝土抗压强度的影响
在本研究中,研究了不同储存条件下获得的不同水饱和度对三种不同混凝土的静态和动态抗压强度的影响。试样首先干燥,然后水饱和,并在静态和冲击载荷下进行测试。冲击试验是在一个分开的霍普金森酒吧中进行的。根据混凝土强度等级,在90–160 1/s范围内的应变速率下,抗压强度增加了200%–300%。与在环境条件下储存相比,由于微裂纹的形成,压缩强度由于干燥而降低。此外,与干燥试样相比,水饱和试样的混凝土抗压强度降低。这种下降是在静态和冲击载荷下观察到的,并且与应变速率无关。与水饱和试样相比,干燥试样的破坏更具爆炸性,裂纹数量增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信