The role of single-walled carbon nanotubes functionalized with gold to increase radiosensitivity of cancer cells to X-ray radiation

IF 3.7 2区 化学 Q2 CHEMISTRY, APPLIED
Afsoon Aghaei, Maryam Shaterian, Hossein Danafar, Blaž Likozar, Andraž Šuligoj, Saso Gyergyek
{"title":"The role of single-walled carbon nanotubes functionalized with gold to increase radiosensitivity of cancer cells to X-ray radiation","authors":"Afsoon Aghaei,&nbsp;Maryam Shaterian,&nbsp;Hossein Danafar,&nbsp;Blaž Likozar,&nbsp;Andraž Šuligoj,&nbsp;Saso Gyergyek","doi":"10.1002/aoc.7265","DOIUrl":null,"url":null,"abstract":"<p>The improvement of high-Z-based metallic nanostructures as radiosensitizers with high monolithicity and versatility by superadditive therapeutic track and the good protective effect is considerable, but they are limited by some problems such as nonideal selectivity for the target tissue. In this study, nanosystems were developed to enhance the efficacy of radiotherapy and reduce cancer cell survival based on innovative gold (Au) functionalized oxygen-single-walled carbon nanotubes (O-SWCNTs). We illustrate the use of folic acid (FA) as a targeting agent and bovine serum albumin (BSA) to stabilize the physiological environment and increase durability. The physical and chemical properties of the nanosystems were evaluated using transmission electron microscopy (TEM), selected area electron diffraction (SAED), dynamic light scattering (DLS), zeta potential, X-ray diffraction (XRD), ultraviolet–visible (UV–Visible), and Fourier transform infrared (FTIR) techniques. Finally, the MTT assay was used to investigate the therapeutic effects of nanoparticles in the 4 T1 mouse breast cancer model in the presence and absence of X-rays. So, the cancer cells experienced a more effective reduction in survival after receiving O-SWCNTs-Au-BSA-FA + 8 Gy than O-SWCNTs-BSA, Au-BSA-FA, and O-SWCNTs-Au-BSA + 8 Gy groups.</p>","PeriodicalId":8344,"journal":{"name":"Applied Organometallic Chemistry","volume":"37 11","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2023-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Organometallic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aoc.7265","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The improvement of high-Z-based metallic nanostructures as radiosensitizers with high monolithicity and versatility by superadditive therapeutic track and the good protective effect is considerable, but they are limited by some problems such as nonideal selectivity for the target tissue. In this study, nanosystems were developed to enhance the efficacy of radiotherapy and reduce cancer cell survival based on innovative gold (Au) functionalized oxygen-single-walled carbon nanotubes (O-SWCNTs). We illustrate the use of folic acid (FA) as a targeting agent and bovine serum albumin (BSA) to stabilize the physiological environment and increase durability. The physical and chemical properties of the nanosystems were evaluated using transmission electron microscopy (TEM), selected area electron diffraction (SAED), dynamic light scattering (DLS), zeta potential, X-ray diffraction (XRD), ultraviolet–visible (UV–Visible), and Fourier transform infrared (FTIR) techniques. Finally, the MTT assay was used to investigate the therapeutic effects of nanoparticles in the 4 T1 mouse breast cancer model in the presence and absence of X-rays. So, the cancer cells experienced a more effective reduction in survival after receiving O-SWCNTs-Au-BSA-FA + 8 Gy than O-SWCNTs-BSA, Au-BSA-FA, and O-SWCNTs-Au-BSA + 8 Gy groups.

Abstract Image

金功能化单壁碳纳米管在提高癌症细胞对X射线辐射敏感性中的作用
高Z-基金属纳米结构作为具有高整体性和多功能性的放射增敏剂,通过超加性的治疗轨道和良好的保护作用得到了相当大的改进,但它们受到一些问题的限制,如对靶组织的非理想选择性。在这项研究中,开发了基于创新的金(Au)功能化氧-角壁碳纳米管(O-SWCNTs)的纳米系统,以提高放射治疗的疗效并降低癌症细胞的存活率。我们说明了使用叶酸(FA)作为靶向剂和牛血清白蛋白(BSA)来稳定生理环境并提高耐久性。使用透射电子显微镜(TEM)、选区电子衍射(SAED)、动态光散射(DLS)、ζ电位、X射线衍射(XRD)、紫外-可见光(UV–visible)和傅里叶变换红外(FTIR)技术评估了纳米系统的物理和化学性质。最后,使用MTT测定法研究了在存在和不存在X射线的情况下,纳米颗粒在4 T1小鼠乳腺癌症模型中的治疗效果。因此,癌症细胞在接受O-SWCNTs-Au-BSA-FA后,存活率更有效地降低 +比O-SWCNTs-BSA、Au-BSA-FA和O-SWCNTs-Au-BSA高8Gy +8 Gy组。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Organometallic Chemistry
Applied Organometallic Chemistry 化学-无机化学与核化学
CiteScore
7.80
自引率
10.30%
发文量
408
审稿时长
2.2 months
期刊介绍: All new compounds should be satisfactorily identified and proof of their structure given according to generally accepted standards. Structural reports, such as papers exclusively dealing with synthesis and characterization, analytical techniques, or X-ray diffraction studies of metal-organic or organometallic compounds will not be considered. The editors reserve the right to refuse without peer review any manuscript that does not comply with the aims and scope of the journal. Applied Organometallic Chemistry publishes Full Papers, Reviews, Mini Reviews and Communications of scientific research in all areas of organometallic and metal-organic chemistry involving main group metals, transition metals, lanthanides and actinides. All contributions should contain an explicit application of novel compounds, for instance in materials science, nano science, catalysis, chemical vapour deposition, metal-mediated organic synthesis, polymers, bio-organometallics, metallo-therapy, metallo-diagnostics and medicine. Reviews of books covering aspects of the fields of focus are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信