Impact of anomalous surface boundary conditions on the planar negative-refractive index lens

IF 1.1 4区 计算机科学 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
Kimberley W. Eccleston
{"title":"Impact of anomalous surface boundary conditions on the planar negative-refractive index lens","authors":"Kimberley W. Eccleston","doi":"10.1049/mia2.12325","DOIUrl":null,"url":null,"abstract":"<p>It is shown that anomalous boundary conditions at the surface of a negative-refractive-index metamaterial planar lens severely diminishes the resolution of the lens when its relative permittivity and permeability are both −1. Anomalous boundary conditions arise in practical microwave metamaterials that are typically a periodic array of identical unit cells comprising dielectric and conducting elements. For a unit-cell size much smaller than the wavelength, homogenised permittivity and permeability are the constituent parameters of the average fields. Average fields vary on a scale larger than the unit cell size compared to localised fields associated with the constituent elements. Unlike the tangential components of the localised field, tangential components of the average fields are discontinuous across the surface of such materials. This anomalous boundary condition at the lens surface must be described by generalised sheet transition conditions. This study develops expressions for the negative-refractive-index lens optical transfer functions, as a function of spatial frequency, for transverse-electric waves, that account for anomalous surface boundary conditions. Both the simulations and experimental data are used to verify the expressions at a frequency of 3 GHz.</p>","PeriodicalId":13374,"journal":{"name":"Iet Microwaves Antennas & Propagation","volume":"17 2","pages":"118-131"},"PeriodicalIF":1.1000,"publicationDate":"2022-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/mia2.12325","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Microwaves Antennas & Propagation","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/mia2.12325","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

It is shown that anomalous boundary conditions at the surface of a negative-refractive-index metamaterial planar lens severely diminishes the resolution of the lens when its relative permittivity and permeability are both −1. Anomalous boundary conditions arise in practical microwave metamaterials that are typically a periodic array of identical unit cells comprising dielectric and conducting elements. For a unit-cell size much smaller than the wavelength, homogenised permittivity and permeability are the constituent parameters of the average fields. Average fields vary on a scale larger than the unit cell size compared to localised fields associated with the constituent elements. Unlike the tangential components of the localised field, tangential components of the average fields are discontinuous across the surface of such materials. This anomalous boundary condition at the lens surface must be described by generalised sheet transition conditions. This study develops expressions for the negative-refractive-index lens optical transfer functions, as a function of spatial frequency, for transverse-electric waves, that account for anomalous surface boundary conditions. Both the simulations and experimental data are used to verify the expressions at a frequency of 3 GHz.

Abstract Image

反常表面边界条件对平面负折射率透镜的影响
研究表明,当负折射率超材料平面透镜的相对介电常数和磁导率均为-1时,其表面的异常边界条件会严重降低透镜的分辨率。在实际微波超材料中会出现异常边界条件,这些超材料通常是由电介质和导电元件组成的相同晶胞的周期性阵列。对于比波长小得多的晶胞尺寸,均匀的介电常数和磁导率是平均场的组成参数。与与组成元素相关联的局部场相比,平均场在大于单位单元大小的尺度上变化。与局部场的切向分量不同,平均场的切向分量在这种材料的表面上是不连续的。透镜表面的这种异常边界条件必须用广义的片层过渡条件来描述。这项研究发展了负折射率透镜光学传递函数的表达式,作为空间频率的函数,用于解释异常表面边界条件的横向电波。仿真和实验数据都用于验证在3GHz频率下的表达式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Iet Microwaves Antennas & Propagation
Iet Microwaves Antennas & Propagation 工程技术-电信学
CiteScore
4.30
自引率
5.90%
发文量
109
审稿时长
7 months
期刊介绍: Topics include, but are not limited to: Microwave circuits including RF, microwave and millimetre-wave amplifiers, oscillators, switches, mixers and other components implemented in monolithic, hybrid, multi-chip module and other technologies. Papers on passive components may describe transmission-line and waveguide components, including filters, multiplexers, resonators, ferrite and garnet devices. For applications, papers can describe microwave sub-systems for use in communications, radar, aerospace, instrumentation, industrial and medical applications. Microwave linear and non-linear measurement techniques. Antenna topics including designed and prototyped antennas for operation at all frequencies; multiband antennas, antenna measurement techniques and systems, antenna analysis and design, aperture antenna arrays, adaptive antennas, printed and wire antennas, microstrip, reconfigurable, conformal and integrated antennas. Computational electromagnetics and synthesis of antenna structures including phased arrays and antenna design algorithms. Radiowave propagation at all frequencies and environments. Current Special Issue. Call for papers: Metrology for 5G Technologies - https://digital-library.theiet.org/files/IET_MAP_CFP_M5GT_SI2.pdf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信