Nonlinear vibration phenomena in hydrodynamically supported rotor systems

Q1 Mathematics
Steffen Nitzschke, Elmar Woschke, Cornelius Strackeljan
{"title":"Nonlinear vibration phenomena in hydrodynamically supported rotor systems","authors":"Steffen Nitzschke,&nbsp;Elmar Woschke,&nbsp;Cornelius Strackeljan","doi":"10.1002/gamm.202300003","DOIUrl":null,"url":null,"abstract":"<p>It is a well-known fact, that hydrodynamically supported systems are prone to nonlinear vibrations. Their exact simulative prediction with respect to frequency and amplitude is complicated by the fact that different system properties interact. The paper at hand outlines an approach that takes all relevant influences like rigid body motions, elastic deformations, nonlinear relation between fluid film pressure and bearing kinematics as well as temperature increase due to power loss or adjacent heat sources into account as detailed as necessary. Both journal and thrust bearings are considered as they contribute to the system's stiffness and damping capabilities. The approach is applied to self-excited pad vibrations of tilting pad thrust bearings as well as the run-up simulation of a turbocharger rotor under different axial loads. Both models are validated against measurements.</p>","PeriodicalId":53634,"journal":{"name":"GAMM Mitteilungen","volume":"46 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/gamm.202300003","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"GAMM Mitteilungen","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/gamm.202300003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

Abstract

It is a well-known fact, that hydrodynamically supported systems are prone to nonlinear vibrations. Their exact simulative prediction with respect to frequency and amplitude is complicated by the fact that different system properties interact. The paper at hand outlines an approach that takes all relevant influences like rigid body motions, elastic deformations, nonlinear relation between fluid film pressure and bearing kinematics as well as temperature increase due to power loss or adjacent heat sources into account as detailed as necessary. Both journal and thrust bearings are considered as they contribute to the system's stiffness and damping capabilities. The approach is applied to self-excited pad vibrations of tilting pad thrust bearings as well as the run-up simulation of a turbocharger rotor under different axial loads. Both models are validated against measurements.

Abstract Image

流体动力支承转子系统的非线性振动现象
众所周知,流体动力支撑系统容易产生非线性振动。由于不同的系统特性相互作用,它们对频率和振幅的精确模拟预测变得复杂。手头的论文概述了一种方法,该方法考虑了所有相关影响,如刚体运动、弹性变形、流体膜压力和轴承运动学之间的非线性关系,以及由于功率损失或相邻热源导致的温度升高,并在必要时进行了详细考虑。轴颈轴承和推力轴承都被认为有助于系统的刚度和阻尼能力。该方法应用于可倾瓦推力轴承的自激瓦振动以及不同轴向载荷下涡轮增压器转子的助跑仿真。两个模型都经过了测量验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
GAMM Mitteilungen
GAMM Mitteilungen Mathematics-Applied Mathematics
CiteScore
8.80
自引率
0.00%
发文量
23
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信