Corrosion behavior of embedded pad hook in glass fiber reinforced concrete

Volkan Özdal, Muhammed Maraşli, Husnu Gerengi, Kader Dikmen
{"title":"Corrosion behavior of embedded pad hook in glass fiber reinforced concrete","authors":"Volkan Özdal,&nbsp;Muhammed Maraşli,&nbsp;Husnu Gerengi,&nbsp;Kader Dikmen","doi":"10.1002/cend.202200012","DOIUrl":null,"url":null,"abstract":"<p>Glass fiber reinforced concrete (GFRC) comprises of hydration products of cement or cement plus sand, and glass fibers which take part in the concrete as reinforcement characteristics. GFRC has been used for over 50 years in several construction elements, such as facade panels, decorative no recoverable formwork, and other products. However, various anchor elements and pad hooks are needed to attach large or small parts made of GFRC panels to the main structure of the buildings. The corrosion rate of embedded metal fasteners over time is related to the water impermeability properties of the GFRC elements. In this study, corrosion of an electro galvanized pad hook embedded in 10–20 mm of the GFRC panel was investigated as a result of the salt spray test performed in accordance with ASTM B 117 standards. At the end of the experiment, the embedded pad hook was taken from the GFRC and analyzed by scanning electron microscopy, energy-dispersive spectroscopy methods. The results showed that the embedded pad hook in the GFRC, which was examined in the test procedures comply with the TS EN 12467 standards, was not corroded by 120-h test carried out in accordance with ASTM B 117 standards.</p>","PeriodicalId":100248,"journal":{"name":"Civil Engineering Design","volume":"5 1-2","pages":"18-24"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Civil Engineering Design","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cend.202200012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Glass fiber reinforced concrete (GFRC) comprises of hydration products of cement or cement plus sand, and glass fibers which take part in the concrete as reinforcement characteristics. GFRC has been used for over 50 years in several construction elements, such as facade panels, decorative no recoverable formwork, and other products. However, various anchor elements and pad hooks are needed to attach large or small parts made of GFRC panels to the main structure of the buildings. The corrosion rate of embedded metal fasteners over time is related to the water impermeability properties of the GFRC elements. In this study, corrosion of an electro galvanized pad hook embedded in 10–20 mm of the GFRC panel was investigated as a result of the salt spray test performed in accordance with ASTM B 117 standards. At the end of the experiment, the embedded pad hook was taken from the GFRC and analyzed by scanning electron microscopy, energy-dispersive spectroscopy methods. The results showed that the embedded pad hook in the GFRC, which was examined in the test procedures comply with the TS EN 12467 standards, was not corroded by 120-h test carried out in accordance with ASTM B 117 standards.

玻璃钢混凝土中预埋垫钩的腐蚀行为
玻璃纤维增强混凝土(GFRC)包括水泥或水泥加砂的水化产物,以及作为钢筋特性参与混凝土的玻璃纤维。GFRC已经使用了50多年 多年来从事多种建筑元素,如外墙板、装饰性无可回收模板和其他产品。然而,需要各种锚固元件和垫钩来将由GFRC面板制成的大部件或小部件连接到建筑物的主体结构上。嵌入式金属紧固件随时间的腐蚀速率与GFRC元件的防水性能有关。在这项研究中,嵌入10-20的电镀锌垫钩的腐蚀 mm的GFRC面板进行了研究,这是根据ASTM B117标准进行的盐雾试验的结果。在实验结束时,从GFRC中取出嵌入的垫钩,并通过扫描电子显微镜、能量色散光谱法进行分析。结果表明,在符合TS EN 12467标准的测试程序中检查的GFRC中的嵌入垫钩,通过根据ASTM B 117标准进行的120-h测试没有被腐蚀。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信