Amreen Jan, Jean-Marc Delaye, Huseyin Kaya, Seong H. Kim, Anamul Haq Mir, Thibault Charpentier, Frédéric Angeli, Stephane Gin
{"title":"Radiation effects on the structure and alteration behavior of an SiO2–Al2O3–B2O3–Na2O glass","authors":"Amreen Jan, Jean-Marc Delaye, Huseyin Kaya, Seong H. Kim, Anamul Haq Mir, Thibault Charpentier, Frédéric Angeli, Stephane Gin","doi":"10.1111/ijag.16618","DOIUrl":null,"url":null,"abstract":"<p>As borosilicate glasses are used in many countries to immobilize fission products and minor actinides after spent fuel reprocessing before storage in a deep geological repository, assessing that their chemical durability is of paramount importance. Here, pristine and preirradiated (952 MeV, 136Xe) SiO<sub>2</sub>–B<sub>2</sub>O<sub>3</sub>–Al<sub>2</sub>O<sub>3</sub>–Na<sub>2</sub>O glasses with the same molar ratios as in the French SON68 and ISG glasses have been subjected to aqueous corrosion in deionized water and in silica-saturated solution to measure the initial and longer term alteration rates. Pristine and preirradiated glasses corrode following the same mechanisms, but the preirradiation has a strong impact on the initial dissolution rate (increase by a factor of 5.6), and on the alteration layer depth in silica-saturated conditions (by two- to threefolds). The later result is related to the formation of a more porous, less passivating gel on the preirradiated glass specimen. Using both experimental spectroscopies (NMR, IR, and SFG) and classical molecular dynamics, the radiation effects on the glass structure and water diffusion have been assessed. After preirradiation, the density and the polymerization degree of the glass decrease, whereas the topological disorder increases. In consequence, water diffusion accelerates. These observations allow to correlate the radiation impact on the alteration behavior to the structural changes.</p>","PeriodicalId":13850,"journal":{"name":"International Journal of Applied Glass Science","volume":"14 1","pages":"113-132"},"PeriodicalIF":2.1000,"publicationDate":"2022-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ijag.16618","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Glass Science","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ijag.16618","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
As borosilicate glasses are used in many countries to immobilize fission products and minor actinides after spent fuel reprocessing before storage in a deep geological repository, assessing that their chemical durability is of paramount importance. Here, pristine and preirradiated (952 MeV, 136Xe) SiO2–B2O3–Al2O3–Na2O glasses with the same molar ratios as in the French SON68 and ISG glasses have been subjected to aqueous corrosion in deionized water and in silica-saturated solution to measure the initial and longer term alteration rates. Pristine and preirradiated glasses corrode following the same mechanisms, but the preirradiation has a strong impact on the initial dissolution rate (increase by a factor of 5.6), and on the alteration layer depth in silica-saturated conditions (by two- to threefolds). The later result is related to the formation of a more porous, less passivating gel on the preirradiated glass specimen. Using both experimental spectroscopies (NMR, IR, and SFG) and classical molecular dynamics, the radiation effects on the glass structure and water diffusion have been assessed. After preirradiation, the density and the polymerization degree of the glass decrease, whereas the topological disorder increases. In consequence, water diffusion accelerates. These observations allow to correlate the radiation impact on the alteration behavior to the structural changes.
期刊介绍:
The International Journal of Applied Glass Science (IJAGS) endeavors to be an indispensable source of information dealing with the application of glass science and engineering across the entire materials spectrum. Through the solicitation, editing, and publishing of cutting-edge peer-reviewed papers, IJAGS will be a highly respected and enduring chronicle of major advances in applied glass science throughout this century. It will be of critical value to the work of scientists, engineers, educators, students, and organizations involved in the research, manufacture and utilization of the material glass. Guided by an International Advisory Board, IJAGS will focus on topical issue themes that broadly encompass the advanced description, application, modeling, manufacture, and experimental investigation of glass.