Understanding the brain with attention: A survey of transformers in brain sciences

Brain-X Pub Date : 2023-10-12 DOI:10.1002/brx2.29
Cheng Chen, Huilin Wang, Yunqing Chen, Zihan Yin, Xinye Yang, Huansheng Ning, Qian Zhang, Weiguang Li, Ruoxiu Xiao, Jizong Zhao
{"title":"Understanding the brain with attention: A survey of transformers in brain sciences","authors":"Cheng Chen,&nbsp;Huilin Wang,&nbsp;Yunqing Chen,&nbsp;Zihan Yin,&nbsp;Xinye Yang,&nbsp;Huansheng Ning,&nbsp;Qian Zhang,&nbsp;Weiguang Li,&nbsp;Ruoxiu Xiao,&nbsp;Jizong Zhao","doi":"10.1002/brx2.29","DOIUrl":null,"url":null,"abstract":"<p>Owing to their superior capabilities and advanced achievements, Transformers have gradually attracted attention with regard to understanding complex brain processing mechanisms. This study aims to comprehensively review and discuss the applications of Transformers in brain sciences. First, we present a brief introduction of the critical architecture of Transformers. Then, we overview and analyze their most relevant applications in brain sciences, including brain disease diagnosis, brain age prediction, brain anomaly detection, semantic segmentation, multi-modal registration, functional Magnetic Resonance Imaging (fMRI) modeling, Electroencephalogram (EEG) processing, and multi-task collaboration. We organize the model details and open sources for reference and replication. In addition, we discuss the quantitative assessments, model complexity, and optimization of Transformers, which are topics of great concern in the field. Finally, we explore possible future challenges and opportunities, exploiting some concrete and recent cases to provoke discussion and innovation. We hope that this review will stimulate interest in further research on Transformers in the context of brain sciences.</p>","PeriodicalId":94303,"journal":{"name":"Brain-X","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/brx2.29","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain-X","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/brx2.29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Owing to their superior capabilities and advanced achievements, Transformers have gradually attracted attention with regard to understanding complex brain processing mechanisms. This study aims to comprehensively review and discuss the applications of Transformers in brain sciences. First, we present a brief introduction of the critical architecture of Transformers. Then, we overview and analyze their most relevant applications in brain sciences, including brain disease diagnosis, brain age prediction, brain anomaly detection, semantic segmentation, multi-modal registration, functional Magnetic Resonance Imaging (fMRI) modeling, Electroencephalogram (EEG) processing, and multi-task collaboration. We organize the model details and open sources for reference and replication. In addition, we discuss the quantitative assessments, model complexity, and optimization of Transformers, which are topics of great concern in the field. Finally, we explore possible future challenges and opportunities, exploiting some concrete and recent cases to provoke discussion and innovation. We hope that this review will stimulate interest in further research on Transformers in the context of brain sciences.

Abstract Image

用注意力理解大脑:脑科学中变压器的调查
变形金刚由于其卓越的能力和先进的成就,在理解复杂的大脑处理机制方面逐渐引起人们的关注。本研究旨在全面回顾和讨论变压器在脑科学中的应用。首先,我们简要介绍了变压器的关键架构。然后,我们概述并分析了它们在脑科学中最相关的应用,包括脑疾病诊断、脑年龄预测、脑异常检测、语义分割、多模式配准、功能磁共振成像(fMRI)建模、脑电图(EEG)处理和多任务协作。我们组织模型细节和开放源代码以供参考和复制。此外,我们还讨论了变压器的定量评估、模型复杂性和优化,这些都是该领域非常关注的话题。最后,我们探讨了未来可能面临的挑战和机遇,利用一些具体和最近的案例来引发讨论和创新。我们希望这篇综述能激发人们在脑科学背景下对变形金刚进行进一步研究的兴趣。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信