Yazeed Alrowaili, Neetesh Saxena, Anurag Srivastava, Mauro Conti, Pete Burnap
{"title":"A review: Monitoring situational awareness of smart grid cyber-physical systems and critical asset identification","authors":"Yazeed Alrowaili, Neetesh Saxena, Anurag Srivastava, Mauro Conti, Pete Burnap","doi":"10.1049/cps2.12059","DOIUrl":null,"url":null,"abstract":"<p>Cyber-Physical Systems (CPSs) are becoming more automated and aimed to be as efficient as possible by enabling integration between their operations and Information Technology (IT) resources. In combination with production automation, these systems need to identify their assets and the correlation between them; any potential threats or failures alert the relevant user/department and suggest the appropriate remediation plan. Moreover, identifying critical assets in these systems is essential. With numerous research and technologies available, assessing IT assets nowadays can be straightforward to implement. However, there is one significant issue of evaluating operational technology critical assets since they have different characteristics, and traditional solutions cannot work efficiently. This study presents the necessary background to attain the appropriate approach for monitoring critical assets in CPSs' Situational Awareness (SA). Additionally, the study presents a broad survey supported by an in-depth review of previous works in three important aspects. First, it reviews the applicability of possible techniques, tools and solutions that can be used to collect detailed information from such systems. Secondly, it covers studies that were implemented to evaluate the criticality of assets in CPSs, demonstrates requirements for critical asset identification, explores different risks and failure techniques utilised in these systems and delves into approaches to evaluate such methods in energy systems. Finally, this paper highlights and analyses SA gaps based on existing solutions, provides future directions and discusses open research issues.</p>","PeriodicalId":36881,"journal":{"name":"IET Cyber-Physical Systems: Theory and Applications","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cps2.12059","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Cyber-Physical Systems: Theory and Applications","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cps2.12059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Cyber-Physical Systems (CPSs) are becoming more automated and aimed to be as efficient as possible by enabling integration between their operations and Information Technology (IT) resources. In combination with production automation, these systems need to identify their assets and the correlation between them; any potential threats or failures alert the relevant user/department and suggest the appropriate remediation plan. Moreover, identifying critical assets in these systems is essential. With numerous research and technologies available, assessing IT assets nowadays can be straightforward to implement. However, there is one significant issue of evaluating operational technology critical assets since they have different characteristics, and traditional solutions cannot work efficiently. This study presents the necessary background to attain the appropriate approach for monitoring critical assets in CPSs' Situational Awareness (SA). Additionally, the study presents a broad survey supported by an in-depth review of previous works in three important aspects. First, it reviews the applicability of possible techniques, tools and solutions that can be used to collect detailed information from such systems. Secondly, it covers studies that were implemented to evaluate the criticality of assets in CPSs, demonstrates requirements for critical asset identification, explores different risks and failure techniques utilised in these systems and delves into approaches to evaluate such methods in energy systems. Finally, this paper highlights and analyses SA gaps based on existing solutions, provides future directions and discusses open research issues.