Improved hybrid discretisation of volume integral equation with the characteristic basis function method for analysing scattering from complex dielectric objects
IF 1.1 4区 计算机科学Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
{"title":"Improved hybrid discretisation of volume integral equation with the characteristic basis function method for analysing scattering from complex dielectric objects","authors":"Fei Huang, Yufa Sun, Ming Li, Dalei Wang","doi":"10.1049/mia2.12414","DOIUrl":null,"url":null,"abstract":"<p>The improved hybrid discretisation of volume integral equation (VIE) combined with the characteristic basis function method is proposed to analyse the scattering from complex dielectric objects in this study. To mitigate the excessive number of discrete elements which arise from the conformal discretisation on the complex dielectric objects, the hybrid discretisation is developed. For the conventional hybrid discretisation, the conformal Schaubert–Wilton–Glisson (SWG) basis functions are used to discretise the homogeneous regions, meanwhile, the non-conformal half-SWG basis functions are employed to discretise the boundary regions which separate different materials or multiscale structures. The hybrid discretisation takes advantage of the merits of both conformal and non-conformal basis functions and improves the computational efficiency for solving the VIE. In our study, a kind of edge basis function defined within boundary tetrahedral elements substitutes for the SWG basis functions to model the boundary regions, leading to the further reduction on the number of basis functions. Moreover, the characteristic basis functions extracted from the low-level basis functions are employed to construct the reduced matrix of which the size is considerably smaller than that of the system matrix derived from the VIE. Several numerical results are presented to demonstrate the accuracy and efficiency of the proposed method.</p>","PeriodicalId":13374,"journal":{"name":"Iet Microwaves Antennas & Propagation","volume":"17 13","pages":"990-998"},"PeriodicalIF":1.1000,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/mia2.12414","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Microwaves Antennas & Propagation","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/mia2.12414","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The improved hybrid discretisation of volume integral equation (VIE) combined with the characteristic basis function method is proposed to analyse the scattering from complex dielectric objects in this study. To mitigate the excessive number of discrete elements which arise from the conformal discretisation on the complex dielectric objects, the hybrid discretisation is developed. For the conventional hybrid discretisation, the conformal Schaubert–Wilton–Glisson (SWG) basis functions are used to discretise the homogeneous regions, meanwhile, the non-conformal half-SWG basis functions are employed to discretise the boundary regions which separate different materials or multiscale structures. The hybrid discretisation takes advantage of the merits of both conformal and non-conformal basis functions and improves the computational efficiency for solving the VIE. In our study, a kind of edge basis function defined within boundary tetrahedral elements substitutes for the SWG basis functions to model the boundary regions, leading to the further reduction on the number of basis functions. Moreover, the characteristic basis functions extracted from the low-level basis functions are employed to construct the reduced matrix of which the size is considerably smaller than that of the system matrix derived from the VIE. Several numerical results are presented to demonstrate the accuracy and efficiency of the proposed method.
期刊介绍:
Topics include, but are not limited to:
Microwave circuits including RF, microwave and millimetre-wave amplifiers, oscillators, switches, mixers and other components implemented in monolithic, hybrid, multi-chip module and other technologies. Papers on passive components may describe transmission-line and waveguide components, including filters, multiplexers, resonators, ferrite and garnet devices. For applications, papers can describe microwave sub-systems for use in communications, radar, aerospace, instrumentation, industrial and medical applications. Microwave linear and non-linear measurement techniques.
Antenna topics including designed and prototyped antennas for operation at all frequencies; multiband antennas, antenna measurement techniques and systems, antenna analysis and design, aperture antenna arrays, adaptive antennas, printed and wire antennas, microstrip, reconfigurable, conformal and integrated antennas.
Computational electromagnetics and synthesis of antenna structures including phased arrays and antenna design algorithms.
Radiowave propagation at all frequencies and environments.
Current Special Issue. Call for papers:
Metrology for 5G Technologies - https://digital-library.theiet.org/files/IET_MAP_CFP_M5GT_SI2.pdf