求助PDF
{"title":"The existence of irrational most perfect magic squares","authors":"Jingyuan Chen, Jinwei Wu, Dianhua Wu","doi":"10.1002/jcd.21865","DOIUrl":null,"url":null,"abstract":"<p>Let <math>\n <semantics>\n <mrow>\n <mi>n</mi>\n \n <mo>≡</mo>\n \n <mn>0</mn>\n <mspace></mspace>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>mod</mi>\n <mspace></mspace>\n \n <mn>4</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:10638539:media:jcd21865:jcd21865-math-0001\" wiley:location=\"equation/jcd21865-math-0001.png\"><mrow><mrow><mi>n</mi><mo>\\unicode{x02261}</mo><mn>0</mn><mspace width=\"0.3em\"/><mrow><mo class=\"MathClass-open\">(</mo><mrow><mi>mod</mi><mspace width=\"0.3em\"/><mn>4</mn></mrow><mo class=\"MathClass-close\">)</mo></mrow></mrow></mrow></math></annotation>\n </semantics></math> be a positive integer, <math>\n <semantics>\n <mrow>\n <mi>M</mi>\n \n <mo>=</mo>\n \n <mrow>\n <mo>(</mo>\n \n <msub>\n <mi>m</mi>\n \n <mrow>\n <mi>i</mi>\n \n <mo>,</mo>\n \n <mi>j</mi>\n </mrow>\n </msub>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:10638539:media:jcd21865:jcd21865-math-0002\" wiley:location=\"equation/jcd21865-math-0002.png\"><mrow><mrow><mi>M</mi><mo>=</mo><mrow><mo class=\"MathClass-open\">(</mo><msub><mi>m</mi><mrow><mi>i</mi><mo>,</mo><mi>j</mi></mrow></msub><mo class=\"MathClass-close\">)</mo></mrow></mrow></mrow></math></annotation>\n </semantics></math> be a magic square, where <math>\n <semantics>\n <mrow>\n <mn>0</mn>\n \n <mo>≤</mo>\n \n <msub>\n <mi>m</mi>\n \n <mrow>\n <mi>i</mi>\n \n <mo>,</mo>\n \n <mi>j</mi>\n </mrow>\n </msub>\n \n <mo>≤</mo>\n \n <msup>\n <mi>n</mi>\n \n <mn>2</mn>\n </msup>\n \n <mo>−</mo>\n \n <mn>1</mn>\n \n <mo>,</mo>\n \n <mn>0</mn>\n \n <mo>≤</mo>\n \n <mi>i</mi>\n \n <mo>,</mo>\n \n <mi>j</mi>\n \n <mo>≤</mo>\n \n <mi>n</mi>\n \n <mo>−</mo>\n \n <mn>1</mn>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:10638539:media:jcd21865:jcd21865-math-0003\" wiley:location=\"equation/jcd21865-math-0003.png\"><mrow><mrow><mn>0</mn><mo>\\unicode{x02264}</mo><msub><mi>m</mi><mrow><mi>i</mi><mo>,</mo><mi>j</mi></mrow></msub><mo>\\unicode{x02264}</mo><msup><mi>n</mi><mn>2</mn></msup><mo>\\unicode{x02212}</mo><mn>1</mn><mo>,</mo><mn>0</mn><mo>\\unicode{x02264}</mo><mi>i</mi><mo>,</mo><mi>j</mi><mo>\\unicode{x02264}</mo><mi>n</mi><mo>\\unicode{x02212}</mo><mn>1</mn></mrow></mrow></math></annotation>\n </semantics></math>. <math>\n <semantics>\n <mrow>\n <mi>M</mi>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:10638539:media:jcd21865:jcd21865-math-0004\" wiley:location=\"equation/jcd21865-math-0004.png\"><mrow><mrow><mi>M</mi></mrow></mrow></math></annotation>\n </semantics></math> is called <i>most perfect magic square</i> (MPMS<math>\n <semantics>\n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mi>n</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:10638539:media:jcd21865:jcd21865-math-0005\" wiley:location=\"equation/jcd21865-math-0005.png\"><mrow><mrow><mrow><mo class=\"MathClass-open\">(</mo><mi>n</mi><mo class=\"MathClass-close\">)</mo></mrow></mrow></mrow></math></annotation>\n </semantics></math> for short) if <math>\n <semantics>\n <mrow>\n <msub>\n <mi>m</mi>\n \n <mrow>\n <mi>i</mi>\n \n <mo>,</mo>\n \n <mi>j</mi>\n </mrow>\n </msub>\n \n <mo>+</mo>\n \n <msub>\n <mi>m</mi>\n \n <mrow>\n <mi>i</mi>\n \n <mo>+</mo>\n \n <mfrac>\n <mi>n</mi>\n \n <mn>2</mn>\n </mfrac>\n \n <mo>,</mo>\n \n <mi>j</mi>\n \n <mo>+</mo>\n \n <mfrac>\n <mi>n</mi>\n \n <mn>2</mn>\n </mfrac>\n </mrow>\n </msub>\n \n <mo>=</mo>\n \n <msup>\n <mi>n</mi>\n \n <mn>2</mn>\n </msup>\n \n <mo>−</mo>\n \n <mn>1</mn>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:10638539:media:jcd21865:jcd21865-math-0006\" wiley:location=\"equation/jcd21865-math-0006.png\"><mrow><mrow><msub><mi>m</mi><mrow><mi>i</mi><mo>,</mo><mi>j</mi></mrow></msub><mo>\\unicode{x0002B}</mo><msub><mi>m</mi><mrow><mi>i</mi><mo>\\unicode{x0002B}</mo><mfrac><mi>n</mi><mn>2</mn></mfrac><mo>,</mo><mi>j</mi><mo>\\unicode{x0002B}</mo><mfrac><mi>n</mi><mn>2</mn></mfrac></mrow></msub><mo>=</mo><msup><mi>n</mi><mn>2</mn></msup><mo>\\unicode{x02212}</mo><mn>1</mn></mrow></mrow></math></annotation>\n </semantics></math>, and <math>\n <semantics>\n <mrow>\n <msub>\n <mi>m</mi>\n \n <mrow>\n <mi>i</mi>\n \n <mo>,</mo>\n \n <mi>j</mi>\n </mrow>\n </msub>\n \n <mo>+</mo>\n \n <msub>\n <mi>m</mi>\n \n <mrow>\n <mi>i</mi>\n \n <mo>,</mo>\n \n <mi>j</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n </msub>\n \n <mo>+</mo>\n \n <msub>\n <mi>m</mi>\n \n <mrow>\n <mi>i</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n \n <mo>,</mo>\n \n <mi>j</mi>\n </mrow>\n </msub>\n <mspace></mspace>\n \n <mo>+</mo>\n \n <msub>\n <mi>m</mi>\n \n <mrow>\n <mi>i</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n \n <mo>,</mo>\n \n <mi>j</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n </msub>\n \n <mo>=</mo>\n \n <mn>2</mn>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <msup>\n <mi>n</mi>\n \n <mn>2</mn>\n </msup>\n \n <mo>−</mo>\n \n <mn>1</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:10638539:media:jcd21865:jcd21865-math-0007\" wiley:location=\"equation/jcd21865-math-0007.png\"><mrow><mrow><msub><mi>m</mi><mrow><mi>i</mi><mo>,</mo><mi>j</mi></mrow></msub><mo>\\unicode{x0002B}</mo><msub><mi>m</mi><mrow><mi>i</mi><mo>,</mo><mi>j</mi><mo>\\unicode{x0002B}</mo><mn>1</mn></mrow></msub><mo>\\unicode{x0002B}</mo><msub><mi>m</mi><mrow><mi>i</mi><mo>\\unicode{x0002B}</mo><mn>1</mn><mo>,</mo><mi>j</mi></mrow></msub><mspace width=\"0.25em\"/><mo>\\unicode{x0002B}</mo><msub><mi>m</mi><mrow><mi>i</mi><mo>\\unicode{x0002B}</mo><mn>1</mn><mo>,</mo><mi>j</mi><mo>\\unicode{x0002B}</mo><mn>1</mn></mrow></msub><mo>=</mo><mn>2</mn><mrow><mo class=\"MathClass-open\">(</mo><mrow><msup><mi>n</mi><mn>2</mn></msup><mo>\\unicode{x02212}</mo><mn>1</mn></mrow><mo class=\"MathClass-close\">)</mo></mrow></mrow></mrow></math></annotation>\n </semantics></math>. Let <math>\n <semantics>\n <mrow>\n <mi>M</mi>\n \n <mo>=</mo>\n \n <mi>n</mi>\n \n <mi>A</mi>\n \n <mo>+</mo>\n \n <mi>B</mi>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:10638539:media:jcd21865:jcd21865-math-0008\" wiley:location=\"equation/jcd21865-math-0008.png\"><mrow><mrow><mi>M</mi><mo>=</mo><mi>n</mi><mi>A</mi><mo>\\unicode{x0002B}</mo><mi>B</mi></mrow></mrow></math></annotation>\n </semantics></math>, where <math>\n <semantics>\n <mrow>\n <mi>A</mi>\n \n <mo>=</mo>\n \n <mrow>\n <mo>(</mo>\n \n <msub>\n <mi>a</mi>\n \n <mrow>\n <mi>i</mi>\n \n <mo>,</mo>\n \n <mi>j</mi>\n </mrow>\n </msub>\n \n <mo>)</mo>\n </mrow>\n \n <mo>,</mo>\n \n <mi>B</mi>\n \n <mo>=</mo>\n \n <mrow>\n <mo>(</mo>\n \n <msub>\n <mi>b</mi>\n \n <mrow>\n <mi>i</mi>\n \n <mo>,</mo>\n \n <mi>j</mi>\n </mrow>\n </msub>\n \n <mo>)</mo>\n </mrow>\n \n <mo>,</mo>\n \n <mn>0</mn>\n \n <mo>≤</mo>\n \n <msub>\n <mi>a</mi>\n \n <mrow>\n <mi>i</mi>\n \n <mo>,</mo>\n \n <mi>j</mi>\n </mrow>\n </msub>\n \n <mo>,</mo>\n \n <msub>\n <mi>b</mi>\n \n <mrow>\n <mi>i</mi>\n \n <mo>,</mo>\n \n <mi>j</mi>\n </mrow>\n </msub>\n \n <mo>≤</mo>\n \n <mi>n</mi>\n \n <mo>−</mo>\n \n <mn>1</mn>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:10638539:media:jcd21865:jcd21865-math-0009\" wiley:location=\"equation/jcd21865-math-0009.png\"><mrow><mrow><mi>A</mi><mo>=</mo><mrow><mo class=\"MathClass-open\">(</mo><msub><mi>a</mi><mrow><mi>i</mi><mo>,</mo><mi>j</mi></mrow></msub><mo class=\"MathClass-close\">)</mo></mrow><mo>,</mo><mi>B</mi><mo>=</mo><mrow><mo class=\"MathClass-open\">(</mo><msub><mi>b</mi><mrow><mi>i</mi><mo>,</mo><mi>j</mi></mrow></msub><mo class=\"MathClass-close\">)</mo></mrow><mo>,</mo><mn>0</mn><mo>\\unicode{x02264}</mo><msub><mi>a</mi><mrow><mi>i</mi><mo>,</mo><mi>j</mi></mrow></msub><mo>,</mo><msub><mi>b</mi><mrow><mi>i</mi><mo>,</mo><mi>j</mi></mrow></msub><mo>\\unicode{x02264}</mo><mi>n</mi><mo>\\unicode{x02212}</mo><mn>1</mn></mrow></mrow></math></annotation>\n </semantics></math>. <math>\n <semantics>\n <mrow>\n <mi>M</mi>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:10638539:media:jcd21865:jcd21865-math-0010\" wiley:location=\"equation/jcd21865-math-0010.png\"><mrow><mrow><mi>M</mi></mrow></mrow></math></annotation>\n </semantics></math> is called <i>rational</i> if both <math>\n <semantics>\n <mrow>\n <mi>A</mi>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:10638539:media:jcd21865:jcd21865-math-0011\" wiley:location=\"equation/jcd21865-math-0011.png\"><mrow><mrow><mi>A</mi></mrow></mrow></math></annotation>\n </semantics></math> and <math>\n <semantics>\n <mrow>\n <mi>B</mi>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:10638539:media:jcd21865:jcd21865-math-0012\" wiley:location=\"equation/jcd21865-math-0012.png\"><mrow><mrow><mi>B</mi></mrow></mrow></math></annotation>\n </semantics></math> possess the property that the sums of the numbers in every row and every column are the same; otherwise, <math>\n <semantics>\n <mrow>\n <mi>M</mi>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:10638539:media:jcd21865:jcd21865-math-0013\" wiley:location=\"equation/jcd21865-math-0013.png\"><mrow><mrow><mi>M</mi></mrow></mrow></math></annotation>\n </semantics></math> is said to be <i>irrational</i>. It was shown that there exists an MPMS<math>\n <semantics>\n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mi>n</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:10638539:media:jcd21865:jcd21865-math-0014\" wiley:location=\"equation/jcd21865-math-0014.png\"><mrow><mrow><mrow><mo class=\"MathClass-open\">(</mo><mi>n</mi><mo class=\"MathClass-close\">)</mo></mrow></mrow></mrow></math></annotation>\n </semantics></math> if and only if <math>\n <semantics>\n <mrow>\n <mi>n</mi>\n \n <mo>≡</mo>\n \n <mn>0</mn>\n <mspace></mspace>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>mod</mi>\n <mspace></mspace>\n \n <mn>4</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:10638539:media:jcd21865:jcd21865-math-0015\" wiley:location=\"equation/jcd21865-math-0015.png\"><mrow><mrow><mi>n</mi><mo>\\unicode{x02261}</mo><mn>0</mn><mspace width=\"0.3em\"/><mrow><mo class=\"MathClass-open\">(</mo><mrow><mi>mod</mi><mspace width=\"0.3em\"/><mn>4</mn></mrow><mo class=\"MathClass-close\">)</mo></mrow></mrow></mrow></math></annotation>\n </semantics></math> and <math>\n <semantics>\n <mrow>\n <mi>n</mi>\n \n <mo>≥</mo>\n \n <mn>4</mn>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:10638539:media:jcd21865:jcd21865-math-0016\" wiley:location=\"equation/jcd21865-math-0016.png\"><mrow><mrow><mi>n</mi><mo>\\unicode{x02265}</mo><mn>4</mn></mrow></mrow></math></annotation>\n </semantics></math>. In this paper, it is proved that there exists an <i>irrational</i> MPMS<math>\n <semantics>\n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mi>n</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:10638539:media:jcd21865:jcd21865-math-0017\" wiley:location=\"equation/jcd21865-math-0017.png\"><mrow><mrow><mrow><mo class=\"MathClass-open\">(</mo><mi>n</mi><mo class=\"MathClass-close\">)</mo></mrow></mrow></mrow></math></annotation>\n </semantics></math> if and only if <math>\n <semantics>\n <mrow>\n <mi>n</mi>\n \n <mo>=</mo>\n \n <msup>\n <mn>2</mn>\n \n <mi>t</mi>\n </msup>\n \n <mi>k</mi>\n \n <mo>,</mo>\n \n <mi>t</mi>\n \n <mo>≥</mo>\n \n <mn>2</mn>\n \n <mo>,</mo>\n \n <mi>k</mi>\n \n <mo>≡</mo>\n \n <mn>1</mn>\n <mspace></mspace>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>mod</mi>\n <mspace></mspace>\n \n <mn>2</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <mo>,</mo>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:10638539:media:jcd21865:jcd21865-math-0018\" wiley:location=\"equation/jcd21865-math-0018.png\"><mrow><mrow><mi>n</mi><mo>=</mo><msup><mn>2</mn><mi>t</mi></msup><mi>k</mi><mo>,</mo><mi>t</mi><mo>\\unicode{x02265}</mo><mn>2</mn><mo>,</mo><mi>k</mi><mo>\\unicode{x02261}</mo><mn>1</mn><mspace width=\"0.3em\"/><mrow><mo class=\"MathClass-open\">(</mo><mrow><mi>mod</mi><mspace width=\"0.3em\"/><mn>2</mn></mrow><mo class=\"MathClass-close\">)</mo></mrow><mo>,</mo></mrow></mrow></math></annotation>\n </semantics></math> and <math>\n <semantics>\n <mrow>\n <mi>k</mi>\n \n <mo>></mo>\n \n <mn>1</mn>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:10638539:media:jcd21865:jcd21865-math-0019\" wiley:location=\"equation/jcd21865-math-0019.png\"><mrow><mrow><mi>k</mi><mo>\\unicode{x0003E}</mo><mn>1</mn></mrow></mrow></math></annotation>\n </semantics></math>.</p>","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"31 1","pages":"23-40"},"PeriodicalIF":0.5000,"publicationDate":"2022-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Designs","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcd.21865","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1
引用
批量引用
Abstract
Let
n
≡
0
(
mod
4
)
<math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:10638539:media:jcd21865:jcd21865-math-0001" wiley:location="equation/jcd21865-math-0001.png"><mrow><mrow><mi>n</mi><mo>\unicode{x02261}</mo><mn>0</mn><mspace width="0.3em"/><mrow><mo class="MathClass-open">(</mo><mrow><mi>mod</mi><mspace width="0.3em"/><mn>4</mn></mrow><mo class="MathClass-close">)</mo></mrow></mrow></mrow></math>
be a positive integer,
M
=
(
m
i
,
j
)
<math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:10638539:media:jcd21865:jcd21865-math-0002" wiley:location="equation/jcd21865-math-0002.png"><mrow><mrow><mi>M</mi><mo>=</mo><mrow><mo class="MathClass-open">(</mo><msub><mi>m</mi><mrow><mi>i</mi><mo>,</mo><mi>j</mi></mrow></msub><mo class="MathClass-close">)</mo></mrow></mrow></mrow></math>
be a magic square, where
0
≤
m
i
,
j
≤
n
2
−
1
,
0
≤
i
,
j
≤
n
−
1
<math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:10638539:media:jcd21865:jcd21865-math-0003" wiley:location="equation/jcd21865-math-0003.png"><mrow><mrow><mn>0</mn><mo>\unicode{x02264}</mo><msub><mi>m</mi><mrow><mi>i</mi><mo>,</mo><mi>j</mi></mrow></msub><mo>\unicode{x02264}</mo><msup><mi>n</mi><mn>2</mn></msup><mo>\unicode{x02212}</mo><mn>1</mn><mo>,</mo><mn>0</mn><mo>\unicode{x02264}</mo><mi>i</mi><mo>,</mo><mi>j</mi><mo>\unicode{x02264}</mo><mi>n</mi><mo>\unicode{x02212}</mo><mn>1</mn></mrow></mrow></math>
.
M
<math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:10638539:media:jcd21865:jcd21865-math-0004" wiley:location="equation/jcd21865-math-0004.png"><mrow><mrow><mi>M</mi></mrow></mrow></math>
is called most perfect magic square (MPMS
(
n
)
<math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:10638539:media:jcd21865:jcd21865-math-0005" wiley:location="equation/jcd21865-math-0005.png"><mrow><mrow><mrow><mo class="MathClass-open">(</mo><mi>n</mi><mo class="MathClass-close">)</mo></mrow></mrow></mrow></math>
for short) if
m
i
,
j
+
m
i
+
n
2
,
j
+
n
2
=
n
2
−
1
<math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:10638539:media:jcd21865:jcd21865-math-0006" wiley:location="equation/jcd21865-math-0006.png"><mrow><mrow><msub><mi>m</mi><mrow><mi>i</mi><mo>,</mo><mi>j</mi></mrow></msub><mo>\unicode{x0002B}</mo><msub><mi>m</mi><mrow><mi>i</mi><mo>\unicode{x0002B}</mo><mfrac><mi>n</mi><mn>2</mn></mfrac><mo>,</mo><mi>j</mi><mo>\unicode{x0002B}</mo><mfrac><mi>n</mi><mn>2</mn></mfrac></mrow></msub><mo>=</mo><msup><mi>n</mi><mn>2</mn></msup><mo>\unicode{x02212}</mo><mn>1</mn></mrow></mrow></math>
, and
m
i
,
j
+
m
i
,
j
+
1
+
m
i
+
1
,
j
+
m
i
+
1
,
j
+
1
=
2
(
n
2
−
1
)
<math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:10638539:media:jcd21865:jcd21865-math-0007" wiley:location="equation/jcd21865-math-0007.png"><mrow><mrow><msub><mi>m</mi><mrow><mi>i</mi><mo>,</mo><mi>j</mi></mrow></msub><mo>\unicode{x0002B}</mo><msub><mi>m</mi><mrow><mi>i</mi><mo>,</mo><mi>j</mi><mo>\unicode{x0002B}</mo><mn>1</mn></mrow></msub><mo>\unicode{x0002B}</mo><msub><mi>m</mi><mrow><mi>i</mi><mo>\unicode{x0002B}</mo><mn>1</mn><mo>,</mo><mi>j</mi></mrow></msub><mspace width="0.25em"/><mo>\unicode{x0002B}</mo><msub><mi>m</mi><mrow><mi>i</mi><mo>\unicode{x0002B}</mo><mn>1</mn><mo>,</mo><mi>j</mi><mo>\unicode{x0002B}</mo><mn>1</mn></mrow></msub><mo>=</mo><mn>2</mn><mrow><mo class="MathClass-open">(</mo><mrow><msup><mi>n</mi><mn>2</mn></msup><mo>\unicode{x02212}</mo><mn>1</mn></mrow><mo class="MathClass-close">)</mo></mrow></mrow></mrow></math>
. Let
M
=
n
A
+
B
<math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:10638539:media:jcd21865:jcd21865-math-0008" wiley:location="equation/jcd21865-math-0008.png"><mrow><mrow><mi>M</mi><mo>=</mo><mi>n</mi><mi>A</mi><mo>\unicode{x0002B}</mo><mi>B</mi></mrow></mrow></math>
, where
A
=
(
a
i
,
j
)
,
B
=
(
b
i
,
j
)
,
0
≤
a
i
,
j
,
b
i
,
j
≤
n
−
1
<math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:10638539:media:jcd21865:jcd21865-math-0009" wiley:location="equation/jcd21865-math-0009.png"><mrow><mrow><mi>A</mi><mo>=</mo><mrow><mo class="MathClass-open">(</mo><msub><mi>a</mi><mrow><mi>i</mi><mo>,</mo><mi>j</mi></mrow></msub><mo class="MathClass-close">)</mo></mrow><mo>,</mo><mi>B</mi><mo>=</mo><mrow><mo class="MathClass-open">(</mo><msub><mi>b</mi><mrow><mi>i</mi><mo>,</mo><mi>j</mi></mrow></msub><mo class="MathClass-close">)</mo></mrow><mo>,</mo><mn>0</mn><mo>\unicode{x02264}</mo><msub><mi>a</mi><mrow><mi>i</mi><mo>,</mo><mi>j</mi></mrow></msub><mo>,</mo><msub><mi>b</mi><mrow><mi>i</mi><mo>,</mo><mi>j</mi></mrow></msub><mo>\unicode{x02264}</mo><mi>n</mi><mo>\unicode{x02212}</mo><mn>1</mn></mrow></mrow></math>
.
M
<math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:10638539:media:jcd21865:jcd21865-math-0010" wiley:location="equation/jcd21865-math-0010.png"><mrow><mrow><mi>M</mi></mrow></mrow></math>
is called rational if both
A
<math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:10638539:media:jcd21865:jcd21865-math-0011" wiley:location="equation/jcd21865-math-0011.png"><mrow><mrow><mi>A</mi></mrow></mrow></math>
and
B
<math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:10638539:media:jcd21865:jcd21865-math-0012" wiley:location="equation/jcd21865-math-0012.png"><mrow><mrow><mi>B</mi></mrow></mrow></math>
possess the property that the sums of the numbers in every row and every column are the same; otherwise,
M
<math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:10638539:media:jcd21865:jcd21865-math-0013" wiley:location="equation/jcd21865-math-0013.png"><mrow><mrow><mi>M</mi></mrow></mrow></math>
is said to be irrational . It was shown that there exists an MPMS
(
n
)
<math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:10638539:media:jcd21865:jcd21865-math-0014" wiley:location="equation/jcd21865-math-0014.png"><mrow><mrow><mrow><mo class="MathClass-open">(</mo><mi>n</mi><mo class="MathClass-close">)</mo></mrow></mrow></mrow></math>
if and only if
n
≡
0
(
mod
4
)
<math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:10638539:media:jcd21865:jcd21865-math-0015" wiley:location="equation/jcd21865-math-0015.png"><mrow><mrow><mi>n</mi><mo>\unicode{x02261}</mo><mn>0</mn><mspace width="0.3em"/><mrow><mo class="MathClass-open">(</mo><mrow><mi>mod</mi><mspace width="0.3em"/><mn>4</mn></mrow><mo class="MathClass-close">)</mo></mrow></mrow></mrow></math>
and
n
≥
4
<math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:10638539:media:jcd21865:jcd21865-math-0016" wiley:location="equation/jcd21865-math-0016.png"><mrow><mrow><mi>n</mi><mo>\unicode{x02265}</mo><mn>4</mn></mrow></mrow></math>
. In this paper, it is proved that there exists an irrational MPMS
(
n
)
<math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:10638539:media:jcd21865:jcd21865-math-0017" wiley:location="equation/jcd21865-math-0017.png"><mrow><mrow><mrow><mo class="MathClass-open">(</mo><mi>n</mi><mo class="MathClass-close">)</mo></mrow></mrow></mrow></math>
if and only if
n
=
2
t
k
,
t
≥
2
,
k
≡
1
(
mod
2
)
,
<math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:10638539:media:jcd21865:jcd21865-math-0018" wiley:location="equation/jcd21865-math-0018.png"><mrow><mrow><mi>n</mi><mo>=</mo><msup><mn>2</mn><mi>t</mi></msup><mi>k</mi><mo>,</mo><mi>t</mi><mo>\unicode{x02265}</mo><mn>2</mn><mo>,</mo><mi>k</mi><mo>\unicode{x02261}</mo><mn>1</mn><mspace width="0.3em"/><mrow><mo class="MathClass-open">(</mo><mrow><mi>mod</mi><mspace width="0.3em"/><mn>2</mn></mrow><mo class="MathClass-close">)</mo></mrow><mo>,</mo></mrow></mrow></math>
and
k
>
1
<math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:10638539:media:jcd21865:jcd21865-math-0019" wiley:location="equation/jcd21865-math-0019.png"><mrow><mrow><mi>k</mi><mo>\unicode{x0003E}</mo><mn>1</mn></mrow></mrow></math>
.