Simulation-based guidance for improving CO 2 ${\rm CO}_{2}$ reduction on silver gas diffusion electrodes

IF 2.9 Q2 ELECTROCHEMISTRY
Matthias Heßelmann, Berinike Clara Bräsel, Robert Gregor Keller, Matthias Wessling
{"title":"Simulation-based guidance for improving \n \n \n CO\n 2\n \n ${\\rm CO}_{2}$\n reduction on silver gas diffusion electrodes","authors":"Matthias Heßelmann,&nbsp;Berinike Clara Bräsel,&nbsp;Robert Gregor Keller,&nbsp;Matthias Wessling","doi":"10.1002/elsa.202100160","DOIUrl":null,"url":null,"abstract":"<p>The reduction of <math>\n <semantics>\n <msub>\n <mi>CO</mi>\n <mn>2</mn>\n </msub>\n <annotation>${\\rm CO}_{2}$</annotation>\n </semantics></math> in an electrochemical reactor using electrical energy is a promising approach to implement a more sustainable carbon economy and to replace fossil fuels with renewable carbon sources. Conventionally used solid plate electrodes are limited by poor mass transport of the reactants. Gas diffusion electrodes (GDEs) can overcome this limitation and have gained industrial relevance during the last decades. A comprehensive understanding of transport and conversion phenomena within such porous electrodes is not yet well developed. Here, we report a one-dimensional steady state model of the GDE to investigate the influence of relevant operational parameters and GDE properties on <math>\n <semantics>\n <msub>\n <mi>CO</mi>\n <mn>2</mn>\n </msub>\n <annotation>${\\rm CO}_{2}$</annotation>\n </semantics></math> reduction. The results indicate the importance of controlling the local reaction environment, that is, the reactant concentration and the pH value, by tuning the electrolyte and gas composition, and flow rate as well as the catalyst layer properties.</p>","PeriodicalId":93746,"journal":{"name":"Electrochemical science advances","volume":"3 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2022-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elsa.202100160","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochemical science advances","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/elsa.202100160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 8

Abstract

The reduction of CO 2 ${\rm CO}_{2}$ in an electrochemical reactor using electrical energy is a promising approach to implement a more sustainable carbon economy and to replace fossil fuels with renewable carbon sources. Conventionally used solid plate electrodes are limited by poor mass transport of the reactants. Gas diffusion electrodes (GDEs) can overcome this limitation and have gained industrial relevance during the last decades. A comprehensive understanding of transport and conversion phenomena within such porous electrodes is not yet well developed. Here, we report a one-dimensional steady state model of the GDE to investigate the influence of relevant operational parameters and GDE properties on CO 2 ${\rm CO}_{2}$ reduction. The results indicate the importance of controlling the local reaction environment, that is, the reactant concentration and the pH value, by tuning the electrolyte and gas composition, and flow rate as well as the catalyst layer properties.

Abstract Image

基于模拟的改进银气体扩散电极上CO2${\rm CO}_{2}$还原的指南
在使用电能的电化学反应器中减少CO2${\rm CO}_{2}$是实现更可持续的碳经济和用可再生碳源取代化石燃料的一种很有前途的方法。常规使用的固体板电极受到反应物质量传输差的限制。气体扩散电极(GDE)可以克服这一限制,并在过去几十年中获得了工业应用。对这种多孔电极内的传输和转换现象的全面理解尚未得到很好的发展。在这里,我们报道了GDE的一维稳态模型,以研究相关操作参数和GDE性质对CO2${\rm CO}_{2}$还原的影响。结果表明,通过调节电解质和气体成分、流速以及催化剂层性质来控制局部反应环境,即反应物浓度和pH值的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.80
自引率
0.00%
发文量
0
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信