{"title":"Characterization of missense mutations in the NADPH oxidase partner p22phox in the A22° subtype of chronic granulomatous disease","authors":"Chikage Kawai, Mizuho Kajikawa, Akira Yamauchi, Shuichiro Okamoto, Futoshi Kuribayashi, Kei Miyano","doi":"10.1111/1348-0421.13051","DOIUrl":null,"url":null,"abstract":"<p>Defective superoxide production by NADPH oxidase 2 (Nox2) in phagocyte cells results in the development of chronic granulomatous disease (CGD), a hereditary disease characterized by recurrent and life-threatening infections. The partner protein p22<sup><i>phox</i></sup> is a membrane-spanning protein which forms a stable heterodimer with Nox2 in the endoplasmic reticulum. This interaction ensures the stability of each protein and their accurate trafficking to the cell membrane. The present paper describes the characterization of p22<sup><i>phox</i></sup> missense mutations that were identified in a patient with CGD who presented with undetectable levels of p22<sup><i>phox</i></sup>. Using a reconstitution system, it was found that p22<sup><i>phox</i></sup> expression decreased when R90Q, A117E, S118R, A124S, A124V, A125T, or E129K mutations were introduced, suggesting that these mutations destabilize the protein. In contrast, introducing an L105R mutation did not affect protein expression, but did inhibit p22<sup><i>phox</i></sup> binding to Nox2. Thus, the missense mutations discussed here contribute to the development of CGD by either disrupting protein stability or by impairing the interaction between p22<sup><i>phox</i></sup> and Nox2.</p>","PeriodicalId":18679,"journal":{"name":"Microbiology and Immunology","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiology and Immunology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1348-0421.13051","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Defective superoxide production by NADPH oxidase 2 (Nox2) in phagocyte cells results in the development of chronic granulomatous disease (CGD), a hereditary disease characterized by recurrent and life-threatening infections. The partner protein p22phox is a membrane-spanning protein which forms a stable heterodimer with Nox2 in the endoplasmic reticulum. This interaction ensures the stability of each protein and their accurate trafficking to the cell membrane. The present paper describes the characterization of p22phox missense mutations that were identified in a patient with CGD who presented with undetectable levels of p22phox. Using a reconstitution system, it was found that p22phox expression decreased when R90Q, A117E, S118R, A124S, A124V, A125T, or E129K mutations were introduced, suggesting that these mutations destabilize the protein. In contrast, introducing an L105R mutation did not affect protein expression, but did inhibit p22phox binding to Nox2. Thus, the missense mutations discussed here contribute to the development of CGD by either disrupting protein stability or by impairing the interaction between p22phox and Nox2.
期刊介绍:
Microbiology and Immunology is published in association with Japanese Society for Bacteriology, Japanese Society for Virology, and Japanese Society for Host Defense Research. It is peer-reviewed publication that provides insight into the study of microbes and the host immune, biological and physiological responses.
Fields covered by Microbiology and Immunology include:Bacteriology|Virology|Immunology|pathogenic infections in human, animals and plants|pathogenicity and virulence factors such as microbial toxins and cell-surface components|factors involved in host defense, inflammation, development of vaccines|antimicrobial agents and drug resistance of microbes|genomics and proteomics.