End-periodic homeomorphisms and volumes of mapping tori

Pub Date : 2023-01-06 DOI:10.1112/topo.12277
Elizabeth Field, Heejoung Kim, Christopher Leininger, Marissa Loving
{"title":"End-periodic homeomorphisms and volumes of mapping tori","authors":"Elizabeth Field,&nbsp;Heejoung Kim,&nbsp;Christopher Leininger,&nbsp;Marissa Loving","doi":"10.1112/topo.12277","DOIUrl":null,"url":null,"abstract":"<p>Given an irreducible, end-periodic homeomorphism <math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mo>:</mo>\n <mi>S</mi>\n <mo>→</mo>\n <mi>S</mi>\n </mrow>\n <annotation>$f: S \\rightarrow S$</annotation>\n </semantics></math> of a surface with finitely many ends, all accumulated by genus, the mapping torus, <math>\n <semantics>\n <msub>\n <mi>M</mi>\n <mi>f</mi>\n </msub>\n <annotation>$M_f$</annotation>\n </semantics></math>, is the interior of a compact, irreducible, atoroidal 3-manifold <math>\n <semantics>\n <msub>\n <mover>\n <mi>M</mi>\n <mo>¯</mo>\n </mover>\n <mi>f</mi>\n </msub>\n <annotation>$\\overline{M}_f$</annotation>\n </semantics></math> with incompressible boundary. Our main result is an upper bound on the infimal hyperbolic volume of <math>\n <semantics>\n <msub>\n <mover>\n <mi>M</mi>\n <mo>¯</mo>\n </mover>\n <mi>f</mi>\n </msub>\n <annotation>$\\overline{M}_f$</annotation>\n </semantics></math> in terms of the translation length of <math>\n <semantics>\n <mi>f</mi>\n <annotation>$f$</annotation>\n </semantics></math> on the pants graph of <math>\n <semantics>\n <mi>S</mi>\n <annotation>$S$</annotation>\n </semantics></math>. This builds on work of Brock and Agol in the finite-type setting. We also construct a broad class of examples of irreducible, end-periodic homeomorphisms and use them to show that our bound is asymptotically sharp.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/topo.12277","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/topo.12277","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Given an irreducible, end-periodic homeomorphism f : S S $f: S \rightarrow S$ of a surface with finitely many ends, all accumulated by genus, the mapping torus, M f $M_f$ , is the interior of a compact, irreducible, atoroidal 3-manifold M ¯ f $\overline{M}_f$ with incompressible boundary. Our main result is an upper bound on the infimal hyperbolic volume of M ¯ f $\overline{M}_f$ in terms of the translation length of f $f$ on the pants graph of S $S$ . This builds on work of Brock and Agol in the finite-type setting. We also construct a broad class of examples of irreducible, end-periodic homeomorphisms and use them to show that our bound is asymptotically sharp.

Abstract Image

分享
查看原文
映射tori的端周期同胚与体积
给定一个不可约的末端周期同胚f:S→ S$f:S\rightarrowS$的一个具有有限多个末端的曲面,所有末端都由亏格累加,映射环面Mf$M_f$是一个紧致的、不可约的,阿托向3流形M'f$\overline{M}_f具有不可压缩边界的$。我们的主要结果是M’f$\overline的下微双曲体积的上界{M}_f$在S$S$的裤子图上的f$f$的平移长度。这建立在Brock和Agol在有限类型设置中的工作之上。我们还构造了一大类不可约的端周期同胚的例子,并用它们来证明我们的界是渐近尖锐的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信