Patrick Diep, Heping Leo Shen, Julian A. Wiesner, Nadia Mykytczuk, Vladimiros Papangelakis, Alexander F. Yakunin, Radhakrishnan Mahadevan
{"title":"Engineered nickel bioaccumulation in Escherichia coli by NikABCDE transporter and metallothionein overexpression","authors":"Patrick Diep, Heping Leo Shen, Julian A. Wiesner, Nadia Mykytczuk, Vladimiros Papangelakis, Alexander F. Yakunin, Radhakrishnan Mahadevan","doi":"10.1002/elsc.202200133","DOIUrl":null,"url":null,"abstract":"<p>Mine wastewater often contains dissolved metals at concentrations too low to be economically extracted by existing technologies, yet too high for environmental discharge. The most common treatment is chemical precipitation of the dissolved metals using limestone and subsequent disposal of the sludge in tailing impoundments. While it is a cost-effective solution to meet regulatory standards, it represents a lost opportunity. In this study, we engineered <i>Escherichia coli</i> to overexpress its native NikABCDE transporter and a heterologous metallothionein to capture nickel at concentrations in local effluent streams. We found the engineered strain had a 7-fold improvement in the bioaccumulation performance for nickel compared to controls, but also observed a drastic decrease in cell viability due to metabolic burden or inducer (IPTG) toxicity. Growth kinetic analysis revealed the IPTG concentrations used based on past studies lead to growth inhibition, thus delineating future avenues for optimization of the engineered strain and its growth conditions to perform in more complex environments.</p>","PeriodicalId":11678,"journal":{"name":"Engineering in Life Sciences","volume":"23 7","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2023-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elsc.202200133","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering in Life Sciences","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/elsc.202200133","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
Mine wastewater often contains dissolved metals at concentrations too low to be economically extracted by existing technologies, yet too high for environmental discharge. The most common treatment is chemical precipitation of the dissolved metals using limestone and subsequent disposal of the sludge in tailing impoundments. While it is a cost-effective solution to meet regulatory standards, it represents a lost opportunity. In this study, we engineered Escherichia coli to overexpress its native NikABCDE transporter and a heterologous metallothionein to capture nickel at concentrations in local effluent streams. We found the engineered strain had a 7-fold improvement in the bioaccumulation performance for nickel compared to controls, but also observed a drastic decrease in cell viability due to metabolic burden or inducer (IPTG) toxicity. Growth kinetic analysis revealed the IPTG concentrations used based on past studies lead to growth inhibition, thus delineating future avenues for optimization of the engineered strain and its growth conditions to perform in more complex environments.
期刊介绍:
Engineering in Life Sciences (ELS) focuses on engineering principles and innovations in life sciences and biotechnology. Life sciences and biotechnology covered in ELS encompass the use of biomolecules (e.g. proteins/enzymes), cells (microbial, plant and mammalian origins) and biomaterials for biosynthesis, biotransformation, cell-based treatment and bio-based solutions in industrial and pharmaceutical biotechnologies as well as in biomedicine. ELS especially aims to promote interdisciplinary collaborations among biologists, biotechnologists and engineers for quantitative understanding and holistic engineering (design-built-test) of biological parts and processes in the different application areas.