Optofluidic identification of single microorganisms using fiber-optical-tweezer-based Raman spectroscopy with artificial neural network

BMEMat Pub Date : 2023-02-03 DOI:10.1002/bmm2.12007
Chenghong Lin, Xiaofeng Li, Tianli Wu, Jiaqi Xu, Zhiyong Gong, Taiheng Chen, Baojun Li, Yuchao Li, Jinghui Guo, Yao Zhang
{"title":"Optofluidic identification of single microorganisms using fiber-optical-tweezer-based Raman spectroscopy with artificial neural network","authors":"Chenghong Lin,&nbsp;Xiaofeng Li,&nbsp;Tianli Wu,&nbsp;Jiaqi Xu,&nbsp;Zhiyong Gong,&nbsp;Taiheng Chen,&nbsp;Baojun Li,&nbsp;Yuchao Li,&nbsp;Jinghui Guo,&nbsp;Yao Zhang","doi":"10.1002/bmm2.12007","DOIUrl":null,"url":null,"abstract":"<p>Rapid and accurate detection of microorganisms is critical to clinical diagnosis. As Raman spectroscopy promises label-free and culture-free detection of biomedical objects, it holds the potential to rapidly identify microorganisms in a single step. To stabilize the microorganism for spectrum collection and to increase the accuracy of real-time identification, we propose an optofluidic method for single microorganism detection in microfluidics using optical-tweezing-based Raman spectroscopy with artificial neural network. A fiber optical tweezer was incorporated into a microfluidic channel to generate optical forces that trap different species of microorganisms at the tip of the tweezer and their Raman spectra were simultaneously collected. An artificial neural network was designed and employed to classify the Raman spectra of the microorganisms, and the identification accuracy reached 94.93%. This study provides a promising strategy for rapid and accurate diagnosis of microbial infection on a lab-on-a-chip platform.</p>","PeriodicalId":100191,"journal":{"name":"BMEMat","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bmm2.12007","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMEMat","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bmm2.12007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Rapid and accurate detection of microorganisms is critical to clinical diagnosis. As Raman spectroscopy promises label-free and culture-free detection of biomedical objects, it holds the potential to rapidly identify microorganisms in a single step. To stabilize the microorganism for spectrum collection and to increase the accuracy of real-time identification, we propose an optofluidic method for single microorganism detection in microfluidics using optical-tweezing-based Raman spectroscopy with artificial neural network. A fiber optical tweezer was incorporated into a microfluidic channel to generate optical forces that trap different species of microorganisms at the tip of the tweezer and their Raman spectra were simultaneously collected. An artificial neural network was designed and employed to classify the Raman spectra of the microorganisms, and the identification accuracy reached 94.93%. This study provides a promising strategy for rapid and accurate diagnosis of microbial infection on a lab-on-a-chip platform.

Abstract Image

基于光纤镊子的拉曼光谱和人工神经网络对单个微生物的光流体识别
快速准确地检测微生物对临床诊断至关重要。由于拉曼光谱有望对生物医学物体进行无标记和无培养的检测,因此它有可能在一步中快速识别微生物。为了稳定用于光谱采集的微生物并提高实时识别的准确性,我们提出了一种利用基于光学镊子的拉曼光谱和人工神经网络检测微流体中单个微生物的光流体方法。将光纤镊子结合到微流体通道中,以产生在镊子尖端捕获不同种类微生物的光学力,并同时收集它们的拉曼光谱。设计并应用人工神经网络对微生物的拉曼光谱进行分类,识别准确率达到94.93%。该研究为在芯片实验室平台上快速准确地诊断微生物感染提供了一种很有前途的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信