{"title":"Infrared spectroscopy for ploidy estimation: An example in two species of Veronica using fresh and herbarium specimens","authors":"Daniele Buono, Dirk C. Albach","doi":"10.1002/aps3.11516","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Premise</h3>\n \n <p>Polyploidy has become a central factor in plant evolutionary biological research in recent decades. Methods such as flow cytometry have revealed the widespread occurrence of polyploidy; however, its inference relies on expensive lab equipment and is largely restricted to fresh or recently dried material.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>Here, we assess the applicability of infrared spectroscopy to infer ploidy in two related species of <i>Veronica</i> (Plantaginaceae). Infrared spectroscopy relies on differences in the absorbance of tissues, which could be affected by primary and secondary metabolites related to polyploidy. We sampled 33 living plants from the greenhouse and 74 herbarium specimens with ploidy known through flow cytometrical measurements and analyzed the resulting spectra using discriminant analysis of principal components (DAPC) and neural network (NNET) classifiers.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>Living material of both species combined was classified with 70% (DAPC) to 75% (NNET) accuracy, whereas herbarium material was classified with 84% (DAPC) to 85% (NNET) accuracy. Analyzing both species separately resulted in less clear results.</p>\n </section>\n \n <section>\n \n <h3> Discussion</h3>\n \n <p>Infrared spectroscopy is quite reliable but is not a certain method for assessing intraspecific ploidy level differences in two species of <i>Veronica</i>. More accurate inferences rely on large training data sets and herbarium material. This study demonstrates an important way to expand the field of polyploid research to herbaria.</p>\n </section>\n </div>","PeriodicalId":8022,"journal":{"name":"Applications in Plant Sciences","volume":"11 2","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aps3.11516","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applications in Plant Sciences","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aps3.11516","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Premise
Polyploidy has become a central factor in plant evolutionary biological research in recent decades. Methods such as flow cytometry have revealed the widespread occurrence of polyploidy; however, its inference relies on expensive lab equipment and is largely restricted to fresh or recently dried material.
Methods
Here, we assess the applicability of infrared spectroscopy to infer ploidy in two related species of Veronica (Plantaginaceae). Infrared spectroscopy relies on differences in the absorbance of tissues, which could be affected by primary and secondary metabolites related to polyploidy. We sampled 33 living plants from the greenhouse and 74 herbarium specimens with ploidy known through flow cytometrical measurements and analyzed the resulting spectra using discriminant analysis of principal components (DAPC) and neural network (NNET) classifiers.
Results
Living material of both species combined was classified with 70% (DAPC) to 75% (NNET) accuracy, whereas herbarium material was classified with 84% (DAPC) to 85% (NNET) accuracy. Analyzing both species separately resulted in less clear results.
Discussion
Infrared spectroscopy is quite reliable but is not a certain method for assessing intraspecific ploidy level differences in two species of Veronica. More accurate inferences rely on large training data sets and herbarium material. This study demonstrates an important way to expand the field of polyploid research to herbaria.
期刊介绍:
Applications in Plant Sciences (APPS) is a monthly, peer-reviewed, open access journal promoting the rapid dissemination of newly developed, innovative tools and protocols in all areas of the plant sciences, including genetics, structure, function, development, evolution, systematics, and ecology. Given the rapid progress today in technology and its application in the plant sciences, the goal of APPS is to foster communication within the plant science community to advance scientific research. APPS is a publication of the Botanical Society of America, originating in 2009 as the American Journal of Botany''s online-only section, AJB Primer Notes & Protocols in the Plant Sciences.
APPS publishes the following types of articles: (1) Protocol Notes describe new methods and technological advancements; (2) Genomic Resources Articles characterize the development and demonstrate the usefulness of newly developed genomic resources, including transcriptomes; (3) Software Notes detail new software applications; (4) Application Articles illustrate the application of a new protocol, method, or software application within the context of a larger study; (5) Review Articles evaluate available techniques, methods, or protocols; (6) Primer Notes report novel genetic markers with evidence of wide applicability.