Acoustic properties of piezoelectric cubic crystals

Arthur Ballato, John Ballato
{"title":"Acoustic properties of piezoelectric cubic crystals","authors":"Arthur Ballato,&nbsp;John Ballato","doi":"10.1002/ces2.10182","DOIUrl":null,"url":null,"abstract":"<p>This paper is offered as a complementary adjunct to the many treatments of the electronic and photonic properties of cubic III–V and II–VI compounds appearing in the literature. These crystals typically exhibit piezoelectricity, due to the molecular dissymmetry, thereby allowing the inclusion of classical mechanical/acoustic features along with the quantum. We discuss the history of this modality and then illustrate its use by applying it to an electro-elastic problem that has the estimable virtues of having an exact solution, along with wide practical applicability: determination of the piezocoupling values governing the excitation of thickness vibrations in thin cubic films or plates of arbitrary crystallographic orientation by electric fields directed either along, or lateral to, the thickness. Explicit results are given for orientations along the great-circle paths connecting the principal directions [100], [110], and [111]. The formalism is then applied to GaAs as an example; it is further demonstrated that various results, such as the orientational variations of piezocoupling factors, are generally applicable to other members of the III–V and II–VI families by scaling. Ancillary aspects, such as errors due to misorientations, nonlinearities, and equivalent circuit representations, are described and discussed. This work is dedicated to Gerald W. Farnell (1925–2015), Prof. Emeritus, McGill University, Montréal, Canada.</p>","PeriodicalId":13948,"journal":{"name":"International Journal of Ceramic Engineering & Science","volume":"5 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ces2.10182","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Ceramic Engineering & Science","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ces2.10182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper is offered as a complementary adjunct to the many treatments of the electronic and photonic properties of cubic III–V and II–VI compounds appearing in the literature. These crystals typically exhibit piezoelectricity, due to the molecular dissymmetry, thereby allowing the inclusion of classical mechanical/acoustic features along with the quantum. We discuss the history of this modality and then illustrate its use by applying it to an electro-elastic problem that has the estimable virtues of having an exact solution, along with wide practical applicability: determination of the piezocoupling values governing the excitation of thickness vibrations in thin cubic films or plates of arbitrary crystallographic orientation by electric fields directed either along, or lateral to, the thickness. Explicit results are given for orientations along the great-circle paths connecting the principal directions [100], [110], and [111]. The formalism is then applied to GaAs as an example; it is further demonstrated that various results, such as the orientational variations of piezocoupling factors, are generally applicable to other members of the III–V and II–VI families by scaling. Ancillary aspects, such as errors due to misorientations, nonlinearities, and equivalent circuit representations, are described and discussed. This work is dedicated to Gerald W. Farnell (1925–2015), Prof. Emeritus, McGill University, Montréal, Canada.

Abstract Image

压电立方晶体的声学特性
本文是对文献中出现的立方III–V和II–VI化合物的电子和光子性质的许多处理的补充。由于分子不对称性,这些晶体通常表现出压电性,从而允许在量子的同时包含经典的机械/声学特征。我们讨论了这种模态的历史,然后通过将其应用于电弹性问题来说明它的用途,以及广泛的实用性:通过沿厚度方向或横向于厚度方向的电场,确定控制任意晶体取向的立方薄膜或板中厚度振动激发的压电耦合值。给出了沿着连接主方向[100]、[110]和[111]的大圆路径的取向的显式结果。然后将该形式应用于GaAs作为示例;进一步证明了各种结果,如压电耦合因子的取向变化,通常适用于III–V和II–VI家族的其他成员。描述并讨论了辅助方面,如由于定向误差、非线性和等效电路表示引起的误差。本作品献给Gerald W.Farnell(1925–2015),加拿大蒙特利尔麦吉尔大学名誉教授。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信