Using Machine Learning to Create an Early Warning System for Welfare Recipients*

IF 1.5 3区 经济学 Q2 ECONOMICS
Dario Sansone, Anna Zhu
{"title":"Using Machine Learning to Create an Early Warning System for Welfare Recipients*","authors":"Dario Sansone,&nbsp;Anna Zhu","doi":"10.1111/obes.12550","DOIUrl":null,"url":null,"abstract":"<p>Using high-quality nationwide social security data combined with machine learning tools, we develop predictive models of income support receipt intensities for any payment enrolee in the Australian social security system between 2014 and 2018. We show that machine learning algorithms can significantly improve predictive accuracy compared to simpler heuristic models or early warning systems currently in use. Specifically, the former predicts the proportion of time individuals are on income support in the subsequent 4 years with greater accuracy, by a magnitude of at least 22% (14 percentage points increase in the R-squared), compared to the latter. This gain can be achieved at no extra cost to practitioners since the algorithms use administrative data currently available to caseworkers. Consequently, our machine learning algorithms can improve the detection of long-term income support recipients, which can potentially enable governments and institutions to offer timely support to these at-risk individuals.</p>","PeriodicalId":54654,"journal":{"name":"Oxford Bulletin of Economics and Statistics","volume":"85 5","pages":"959-992"},"PeriodicalIF":1.5000,"publicationDate":"2023-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/obes.12550","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oxford Bulletin of Economics and Statistics","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/obes.12550","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

Using high-quality nationwide social security data combined with machine learning tools, we develop predictive models of income support receipt intensities for any payment enrolee in the Australian social security system between 2014 and 2018. We show that machine learning algorithms can significantly improve predictive accuracy compared to simpler heuristic models or early warning systems currently in use. Specifically, the former predicts the proportion of time individuals are on income support in the subsequent 4 years with greater accuracy, by a magnitude of at least 22% (14 percentage points increase in the R-squared), compared to the latter. This gain can be achieved at no extra cost to practitioners since the algorithms use administrative data currently available to caseworkers. Consequently, our machine learning algorithms can improve the detection of long-term income support recipients, which can potentially enable governments and institutions to offer timely support to these at-risk individuals.

Abstract Image

利用机器学习为福利领取者创建预警系统*
利用高质量的全国社会保障数据,结合机器学习工具,我们开发了2014年至2018年间澳大利亚社会保障系统中任何缴费者的收入支持收据强度预测模型。我们表明,与目前使用的更简单的启发式模型或预警系统相比,机器学习算法可以显著提高预测准确性。具体而言,前者预测了个人在随后的4年中获得收入支持的时间比例 与后者相比,精度更高的年份至少提高了22%(R平方增加了14个百分点)。这一收益可以在从业者无需额外成本的情况下实现,因为算法使用了个案工作者目前可用的管理数据。因此,我们的机器学习算法可以改进对长期收入支持接受者的检测,这可能使政府和机构能够及时为这些有风险的个人提供支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Oxford Bulletin of Economics and Statistics
Oxford Bulletin of Economics and Statistics 管理科学-统计学与概率论
CiteScore
5.10
自引率
0.00%
发文量
54
审稿时长
>12 weeks
期刊介绍: Whilst the Oxford Bulletin of Economics and Statistics publishes papers in all areas of applied economics, emphasis is placed on the practical importance, theoretical interest and policy-relevance of their substantive results, as well as on the methodology and technical competence of the research. Contributions on the topical issues of economic policy and the testing of currently controversial economic theories are encouraged, as well as more empirical research on both developed and developing countries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信