{"title":"Toward the recognition of spacecraft feature components: A new benchmark and a new model","authors":"Linwei Qiu, Liang Tang, Rui Zhong","doi":"10.1007/s42064-021-0103-3","DOIUrl":null,"url":null,"abstract":"<div><p>Countries are increasingly interested in spacecraft surveillance and recognition which play an important role in on-orbit maintenance, space docking, and other applications. Traditional detection methods, including radar, have many restrictions, such as excessive costs and energy supply problems. For many on-orbit servicing spacecraft, image recognition is a simple but relatively accurate method for obtaining sufficient position and direction information to offer services. However, to the best of our knowledge, few practical machine-learning models focusing on the recognition of spacecraft feature components have been reported. In addition, it is difficult to find substantial on-orbit images with which to train or evaluate such a model. In this study, we first created a new dataset containing numerous artificial images of on-orbit spacecraft with labeled components. Our base images were derived from 3D Max and STK software. These images include many types of satellites and satellite postures. Considering real-world illumination conditions and imperfect camera observations, we developed a degradation algorithm that enabled us to produce thousands of artificial images of spacecraft. The feature components of the spacecraft in all images were labeled manually. We discovered that direct utilization of the DeepLab V3+ model leads to poor edge recognition. Poorly defined edges provide imprecise position or direction information and degrade the performance of on-orbit services. Thus, the edge information of the target was taken as a supervisory guide, and was used to develop the proposed <i>Edge Auxiliary Supervision DeepLab Network (EASDN)</i>. The main idea of EASDN is to provide a new edge auxiliary loss by calculating the L2 loss between the predicted edge masks and ground-truth edge masks during training. Our extensive experiments demonstrate that our network can perform well both on our benchmark and on real on-orbit spacecraft images from the Internet. Furthermore, the device usage and processing time meet the demands of engineering applications.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":52291,"journal":{"name":"Astrodynamics","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2021-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s42064-021-0103-3","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrodynamics","FirstCategoryId":"1087","ListUrlMain":"https://link.springer.com/article/10.1007/s42064-021-0103-3","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 4
Abstract
Countries are increasingly interested in spacecraft surveillance and recognition which play an important role in on-orbit maintenance, space docking, and other applications. Traditional detection methods, including radar, have many restrictions, such as excessive costs and energy supply problems. For many on-orbit servicing spacecraft, image recognition is a simple but relatively accurate method for obtaining sufficient position and direction information to offer services. However, to the best of our knowledge, few practical machine-learning models focusing on the recognition of spacecraft feature components have been reported. In addition, it is difficult to find substantial on-orbit images with which to train or evaluate such a model. In this study, we first created a new dataset containing numerous artificial images of on-orbit spacecraft with labeled components. Our base images were derived from 3D Max and STK software. These images include many types of satellites and satellite postures. Considering real-world illumination conditions and imperfect camera observations, we developed a degradation algorithm that enabled us to produce thousands of artificial images of spacecraft. The feature components of the spacecraft in all images were labeled manually. We discovered that direct utilization of the DeepLab V3+ model leads to poor edge recognition. Poorly defined edges provide imprecise position or direction information and degrade the performance of on-orbit services. Thus, the edge information of the target was taken as a supervisory guide, and was used to develop the proposed Edge Auxiliary Supervision DeepLab Network (EASDN). The main idea of EASDN is to provide a new edge auxiliary loss by calculating the L2 loss between the predicted edge masks and ground-truth edge masks during training. Our extensive experiments demonstrate that our network can perform well both on our benchmark and on real on-orbit spacecraft images from the Internet. Furthermore, the device usage and processing time meet the demands of engineering applications.
期刊介绍:
Astrodynamics is a peer-reviewed international journal that is co-published by Tsinghua University Press and Springer. The high-quality peer-reviewed articles of original research, comprehensive review, mission accomplishments, and technical comments in all fields of astrodynamics will be given priorities for publication. In addition, related research in astronomy and astrophysics that takes advantages of the analytical and computational methods of astrodynamics is also welcome. Astrodynamics would like to invite all of the astrodynamics specialists to submit their research articles to this new journal. Currently, the scope of the journal includes, but is not limited to:Fundamental orbital dynamicsSpacecraft trajectory optimization and space mission designOrbit determination and prediction, autonomous orbital navigationSpacecraft attitude determination, control, and dynamicsGuidance and control of spacecraft and space robotsSpacecraft constellation design and formation flyingModelling, analysis, and optimization of innovative space systemsNovel concepts for space engineering and interdisciplinary applicationsThe effort of the Editorial Board will be ensuring the journal to publish novel researches that advance the field, and will provide authors with a productive, fair, and timely review experience. It is our sincere hope that all researchers in the field of astrodynamics will eagerly access this journal, Astrodynamics, as either authors or readers, making it an illustrious journal that will shape our future space explorations and discoveries.