Federico De Grossi, Paolo Marzioli, Mengu Cho, Fabio Santoni, Christian Circi
{"title":"Trajectory optimization for the Horyu-VI international lunar mission","authors":"Federico De Grossi, Paolo Marzioli, Mengu Cho, Fabio Santoni, Christian Circi","doi":"10.1007/s42064-021-0105-1","DOIUrl":null,"url":null,"abstract":"<div><p>The Horyu-VI nano-satellite is an international lunar mission with the purpose of studying the lunar horizon glow (LHG)—a still unclear phenomenon caused by electrostatically charged lunar dust particles. This study analyzes the mission trajectory with the hypothesis that it is launched as a secondary payload of the NASA ARTEMIS-II mission. In particular, the effect of the solar gravity gradient is studied; in fact, depending on the starting relative position of the Moon, the Earth, and the Sun, the solar gradient acts differently on the trajectory—changing it significantly. Therefore, the transfer and lunar capture problem is solved in several cases with the initial Sun–Earth–Moon angle as the key parameter. Furthermore, the inclination with respect to the Moon at capture is constrained to be equatorial. Finally, the problem of stabilization and circularization of the lunar orbit is addressed in a specific case, providing an estimate of the total propellant cost to reach the final orbit around the Moon.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":52291,"journal":{"name":"Astrodynamics","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2021-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42064-021-0105-1.pdf","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrodynamics","FirstCategoryId":"1087","ListUrlMain":"https://link.springer.com/article/10.1007/s42064-021-0105-1","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 5
Abstract
The Horyu-VI nano-satellite is an international lunar mission with the purpose of studying the lunar horizon glow (LHG)—a still unclear phenomenon caused by electrostatically charged lunar dust particles. This study analyzes the mission trajectory with the hypothesis that it is launched as a secondary payload of the NASA ARTEMIS-II mission. In particular, the effect of the solar gravity gradient is studied; in fact, depending on the starting relative position of the Moon, the Earth, and the Sun, the solar gradient acts differently on the trajectory—changing it significantly. Therefore, the transfer and lunar capture problem is solved in several cases with the initial Sun–Earth–Moon angle as the key parameter. Furthermore, the inclination with respect to the Moon at capture is constrained to be equatorial. Finally, the problem of stabilization and circularization of the lunar orbit is addressed in a specific case, providing an estimate of the total propellant cost to reach the final orbit around the Moon.
期刊介绍:
Astrodynamics is a peer-reviewed international journal that is co-published by Tsinghua University Press and Springer. The high-quality peer-reviewed articles of original research, comprehensive review, mission accomplishments, and technical comments in all fields of astrodynamics will be given priorities for publication. In addition, related research in astronomy and astrophysics that takes advantages of the analytical and computational methods of astrodynamics is also welcome. Astrodynamics would like to invite all of the astrodynamics specialists to submit their research articles to this new journal. Currently, the scope of the journal includes, but is not limited to:Fundamental orbital dynamicsSpacecraft trajectory optimization and space mission designOrbit determination and prediction, autonomous orbital navigationSpacecraft attitude determination, control, and dynamicsGuidance and control of spacecraft and space robotsSpacecraft constellation design and formation flyingModelling, analysis, and optimization of innovative space systemsNovel concepts for space engineering and interdisciplinary applicationsThe effort of the Editorial Board will be ensuring the journal to publish novel researches that advance the field, and will provide authors with a productive, fair, and timely review experience. It is our sincere hope that all researchers in the field of astrodynamics will eagerly access this journal, Astrodynamics, as either authors or readers, making it an illustrious journal that will shape our future space explorations and discoveries.