{"title":"Timeline Club: An optimization algorithm for solving multiple debris removal missions of the time-dependent traveling salesman problem model","authors":"Nan Zhang, Zhong Zhang, Hexi Baoyin","doi":"10.1007/s42064-021-0107-z","DOIUrl":null,"url":null,"abstract":"<div><p>With the increase of space debris, space debris removal has gradually become a major issue to address by worldwide space agencies. Multiple debris removal missions, in which multiple debris objects are removed in a single mission, are an economical approach to purify the space environment. Such missions can be considered typical time-dependent traveling salesman problems (TDTSPs). In this study, an intelligent global optimization algorithm called Timeline Club Optimization (TCO) is proposed to solve multiple debris removal missions of the TDTSP model. TCO adopts the traditional ant colony optimization (ACO) framework and replaces the pheromone matrix of the ACO with a new structure called the Timeline Club. The Timeline Club records which debris object to be removed next at a certain moment from elitist solutions and decides the probability criterion to generate debris sequences in new solutions. Two hypothetical scenarios, the Iridium-33 mission and the GTOC9 mission, are considered in this study. Simulation results show that TCO offers better performance than those of beam search, ant colony optimization, and the genetic algorithm in multiple debris removal missions of the TDTSP model.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":52291,"journal":{"name":"Astrodynamics","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2021-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrodynamics","FirstCategoryId":"1087","ListUrlMain":"https://link.springer.com/article/10.1007/s42064-021-0107-z","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 9
Abstract
With the increase of space debris, space debris removal has gradually become a major issue to address by worldwide space agencies. Multiple debris removal missions, in which multiple debris objects are removed in a single mission, are an economical approach to purify the space environment. Such missions can be considered typical time-dependent traveling salesman problems (TDTSPs). In this study, an intelligent global optimization algorithm called Timeline Club Optimization (TCO) is proposed to solve multiple debris removal missions of the TDTSP model. TCO adopts the traditional ant colony optimization (ACO) framework and replaces the pheromone matrix of the ACO with a new structure called the Timeline Club. The Timeline Club records which debris object to be removed next at a certain moment from elitist solutions and decides the probability criterion to generate debris sequences in new solutions. Two hypothetical scenarios, the Iridium-33 mission and the GTOC9 mission, are considered in this study. Simulation results show that TCO offers better performance than those of beam search, ant colony optimization, and the genetic algorithm in multiple debris removal missions of the TDTSP model.
期刊介绍:
Astrodynamics is a peer-reviewed international journal that is co-published by Tsinghua University Press and Springer. The high-quality peer-reviewed articles of original research, comprehensive review, mission accomplishments, and technical comments in all fields of astrodynamics will be given priorities for publication. In addition, related research in astronomy and astrophysics that takes advantages of the analytical and computational methods of astrodynamics is also welcome. Astrodynamics would like to invite all of the astrodynamics specialists to submit their research articles to this new journal. Currently, the scope of the journal includes, but is not limited to:Fundamental orbital dynamicsSpacecraft trajectory optimization and space mission designOrbit determination and prediction, autonomous orbital navigationSpacecraft attitude determination, control, and dynamicsGuidance and control of spacecraft and space robotsSpacecraft constellation design and formation flyingModelling, analysis, and optimization of innovative space systemsNovel concepts for space engineering and interdisciplinary applicationsThe effort of the Editorial Board will be ensuring the journal to publish novel researches that advance the field, and will provide authors with a productive, fair, and timely review experience. It is our sincere hope that all researchers in the field of astrodynamics will eagerly access this journal, Astrodynamics, as either authors or readers, making it an illustrious journal that will shape our future space explorations and discoveries.