{"title":"Distributional properties of continuous time processes: from CIR to bates","authors":"Ostap Okhrin, Michael Rockinger, Manuel Schmid","doi":"10.1007/s10182-022-00459-3","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we compute closed-form expressions of moments and comoments for the CIR process which allows us to provide a new construction of the transition probability density based on a moment argument that differs from the historic approach. For Bates’ model with stochastic volatility and jumps, we show that finite difference approximations of higher moments such as the skewness and the kurtosis are unstable and, as a remedy, provide exact analytic formulas for log-returns. Our approach does not assume a constant mean for log-price differentials but correctly incorporates volatility resulting from Ito’s lemma. We also provide R, MATLAB, and Mathematica modules with exact implementations of the theoretical conditional and unconditional moments. These modules should prove useful for empirical research.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10182-022-00459-3.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10182-022-00459-3","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
In this paper, we compute closed-form expressions of moments and comoments for the CIR process which allows us to provide a new construction of the transition probability density based on a moment argument that differs from the historic approach. For Bates’ model with stochastic volatility and jumps, we show that finite difference approximations of higher moments such as the skewness and the kurtosis are unstable and, as a remedy, provide exact analytic formulas for log-returns. Our approach does not assume a constant mean for log-price differentials but correctly incorporates volatility resulting from Ito’s lemma. We also provide R, MATLAB, and Mathematica modules with exact implementations of the theoretical conditional and unconditional moments. These modules should prove useful for empirical research.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.