Prajal Pradhan, Tobias Seydewitz, Bin Zhou, Matthias K. B. Lüdeke, Juergen P. Kropp
{"title":"Climate Extremes are Becoming More Frequent, Co-occurring, and Persistent in Europe","authors":"Prajal Pradhan, Tobias Seydewitz, Bin Zhou, Matthias K. B. Lüdeke, Juergen P. Kropp","doi":"10.1007/s44177-022-00022-4","DOIUrl":null,"url":null,"abstract":"<div><p>With global warming, many climate extremes are becoming more frequent, often co-occurring, or repeatedly occurring in consecutive years. However, only limited studies have investigated these changes of climate extremes together. We study these changes in Europe for the last seven decades (1950–2019) based on 39 climate indices to identify climate extreme hotspots and coldspots. These indices belong to the four climate index groups: cold, heat, drought, and precipitation. Compared to the first half of the study period (1950–1984), most of our study locations faced heat extremes that are more frequent and occurring in consecutive years in the second half (1985–2019). However, the number of cold extremes has decreased in most locations. Simultaneously, some locations, mainly the Mediterranean region, faced an increase in droughts while others, e.g., parts of Eastern Europe and Northern Europe, experienced more intense precipitation. Two or more of these cold, heat, drought, and precipitation extremes have also co-occurred in a few locations of our study area in the same year. Our study highlights that climate extremes are becoming more frequent, co-occurrent, and persistent in Europe. These changes in climate extremes are associated with climate change. Therefore, we could infer that climate change mitigation is crucial for limiting these extremes.</p></div>","PeriodicalId":100099,"journal":{"name":"Anthropocene Science","volume":"1 2","pages":"264 - 277"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s44177-022-00022-4.pdf","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anthropocene Science","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s44177-022-00022-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
With global warming, many climate extremes are becoming more frequent, often co-occurring, or repeatedly occurring in consecutive years. However, only limited studies have investigated these changes of climate extremes together. We study these changes in Europe for the last seven decades (1950–2019) based on 39 climate indices to identify climate extreme hotspots and coldspots. These indices belong to the four climate index groups: cold, heat, drought, and precipitation. Compared to the first half of the study period (1950–1984), most of our study locations faced heat extremes that are more frequent and occurring in consecutive years in the second half (1985–2019). However, the number of cold extremes has decreased in most locations. Simultaneously, some locations, mainly the Mediterranean region, faced an increase in droughts while others, e.g., parts of Eastern Europe and Northern Europe, experienced more intense precipitation. Two or more of these cold, heat, drought, and precipitation extremes have also co-occurred in a few locations of our study area in the same year. Our study highlights that climate extremes are becoming more frequent, co-occurrent, and persistent in Europe. These changes in climate extremes are associated with climate change. Therefore, we could infer that climate change mitigation is crucial for limiting these extremes.