Reconstructing the cruise-phase trajectory of deep-space probes in a general relativistic framework: An application to the Cassini gravitational wave experiment
{"title":"Reconstructing the cruise-phase trajectory of deep-space probes in a general relativistic framework: An application to the Cassini gravitational wave experiment","authors":"Joseph O’Leary, Jean-Pierre Barriot","doi":"10.1007/s42064-023-0160-x","DOIUrl":null,"url":null,"abstract":"<div><p>Einstein’s theory of general relativity is playing an increasingly important role in fields such as interplanetary navigation, astrometry, and metrology. Modern spacecraft and interplanetary probe prediction and estimation platforms employ a perturbed Newtonian framework, supplemented with the Einstein-Infeld-Hoffmann <i>n</i>-body equations of motion. While time in Newtonian mechanics is formally universal, the accuracy of modern radiometric tracking systems necessitate linear corrections via increasingly complex and error-prone post-Newtonian techniques—to account for light deflection due to the solar system bodies. With flagship projects such as the ESA/JAXA BepiColombo mission now operating at unprecedented levels of accuracy, we believe the standard corrected Newtonian paradigm is approaching its limits in terms of complexity. In this paper, we employ a novel prototype software, General Relativistic Accelerometer-based Propagation Environment, to reconstruct the Cassini cruise-phase trajectory during its first gravitational wave experiment in a fully relativistic framework. The results presented herein agree with post-processed trajectory information obtained from NASA’s SPICE kernels at the order of centimetres.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":52291,"journal":{"name":"Astrodynamics","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2023-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42064-023-0160-x.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrodynamics","FirstCategoryId":"1087","ListUrlMain":"https://link.springer.com/article/10.1007/s42064-023-0160-x","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Einstein’s theory of general relativity is playing an increasingly important role in fields such as interplanetary navigation, astrometry, and metrology. Modern spacecraft and interplanetary probe prediction and estimation platforms employ a perturbed Newtonian framework, supplemented with the Einstein-Infeld-Hoffmann n-body equations of motion. While time in Newtonian mechanics is formally universal, the accuracy of modern radiometric tracking systems necessitate linear corrections via increasingly complex and error-prone post-Newtonian techniques—to account for light deflection due to the solar system bodies. With flagship projects such as the ESA/JAXA BepiColombo mission now operating at unprecedented levels of accuracy, we believe the standard corrected Newtonian paradigm is approaching its limits in terms of complexity. In this paper, we employ a novel prototype software, General Relativistic Accelerometer-based Propagation Environment, to reconstruct the Cassini cruise-phase trajectory during its first gravitational wave experiment in a fully relativistic framework. The results presented herein agree with post-processed trajectory information obtained from NASA’s SPICE kernels at the order of centimetres.
期刊介绍:
Astrodynamics is a peer-reviewed international journal that is co-published by Tsinghua University Press and Springer. The high-quality peer-reviewed articles of original research, comprehensive review, mission accomplishments, and technical comments in all fields of astrodynamics will be given priorities for publication. In addition, related research in astronomy and astrophysics that takes advantages of the analytical and computational methods of astrodynamics is also welcome. Astrodynamics would like to invite all of the astrodynamics specialists to submit their research articles to this new journal. Currently, the scope of the journal includes, but is not limited to:Fundamental orbital dynamicsSpacecraft trajectory optimization and space mission designOrbit determination and prediction, autonomous orbital navigationSpacecraft attitude determination, control, and dynamicsGuidance and control of spacecraft and space robotsSpacecraft constellation design and formation flyingModelling, analysis, and optimization of innovative space systemsNovel concepts for space engineering and interdisciplinary applicationsThe effort of the Editorial Board will be ensuring the journal to publish novel researches that advance the field, and will provide authors with a productive, fair, and timely review experience. It is our sincere hope that all researchers in the field of astrodynamics will eagerly access this journal, Astrodynamics, as either authors or readers, making it an illustrious journal that will shape our future space explorations and discoveries.