{"title":"Non-cooperative spacecraft proximity control considering target behavior uncertainty","authors":"Guanjie Sun, Mengqi Zhou, Xiuqiang Jiang","doi":"10.1007/s42064-022-0133-5","DOIUrl":null,"url":null,"abstract":"<div><p>The significant characteristics of space non-cooperative targets include the uncertainties of dynamic parameters and behaviors. Herein, a hybrid proximity control strategy adapted to the behavior uncertainty of a non-cooperative target is presented. First, the relative motion dynamics between the chaser and target is established in the geocentric inertial coordinate system and transcribed based on the chaser spacecraft body coordinate system. Subsequently, to facilitate proximity control under uncertain conditions, an extended state observer is designed to estimate and compensate for the total uncertainty in the relative motion dynamics. Finally, an event-triggered sliding mode control law is designed to track the target with behavior uncertainty and realize synchronization. Numerical simulations demonstrate the effectiveness of the proposed proximity control strategy for both tumbling and maneuvering targets.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":52291,"journal":{"name":"Astrodynamics","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2022-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrodynamics","FirstCategoryId":"1087","ListUrlMain":"https://link.springer.com/article/10.1007/s42064-022-0133-5","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 2
Abstract
The significant characteristics of space non-cooperative targets include the uncertainties of dynamic parameters and behaviors. Herein, a hybrid proximity control strategy adapted to the behavior uncertainty of a non-cooperative target is presented. First, the relative motion dynamics between the chaser and target is established in the geocentric inertial coordinate system and transcribed based on the chaser spacecraft body coordinate system. Subsequently, to facilitate proximity control under uncertain conditions, an extended state observer is designed to estimate and compensate for the total uncertainty in the relative motion dynamics. Finally, an event-triggered sliding mode control law is designed to track the target with behavior uncertainty and realize synchronization. Numerical simulations demonstrate the effectiveness of the proposed proximity control strategy for both tumbling and maneuvering targets.
期刊介绍:
Astrodynamics is a peer-reviewed international journal that is co-published by Tsinghua University Press and Springer. The high-quality peer-reviewed articles of original research, comprehensive review, mission accomplishments, and technical comments in all fields of astrodynamics will be given priorities for publication. In addition, related research in astronomy and astrophysics that takes advantages of the analytical and computational methods of astrodynamics is also welcome. Astrodynamics would like to invite all of the astrodynamics specialists to submit their research articles to this new journal. Currently, the scope of the journal includes, but is not limited to:Fundamental orbital dynamicsSpacecraft trajectory optimization and space mission designOrbit determination and prediction, autonomous orbital navigationSpacecraft attitude determination, control, and dynamicsGuidance and control of spacecraft and space robotsSpacecraft constellation design and formation flyingModelling, analysis, and optimization of innovative space systemsNovel concepts for space engineering and interdisciplinary applicationsThe effort of the Editorial Board will be ensuring the journal to publish novel researches that advance the field, and will provide authors with a productive, fair, and timely review experience. It is our sincere hope that all researchers in the field of astrodynamics will eagerly access this journal, Astrodynamics, as either authors or readers, making it an illustrious journal that will shape our future space explorations and discoveries.