The Yang–Mills–Higgs Functional on Complex Line Bundles: \(\Gamma \)-Convergence and the London Equation

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Giacomo Canevari, Federico Luigi Dipasquale, Giandomenico Orlandi
{"title":"The Yang–Mills–Higgs Functional on Complex Line Bundles: \\(\\Gamma \\)-Convergence and the London Equation","authors":"Giacomo Canevari,&nbsp;Federico Luigi Dipasquale,&nbsp;Giandomenico Orlandi","doi":"10.1007/s00205-023-01933-1","DOIUrl":null,"url":null,"abstract":"<div><p>We consider the Abelian Yang–Mills–Higgs functional, in the non-self dual scaling, on a complex line bundle over a closed Riemannian manifold of dimension <span>\\(n\\ge 3\\)</span>. This functional is the natural generalisation of the Ginzburg–Landau model for superconductivity to the non-Euclidean setting. We prove a <span>\\(\\Gamma \\)</span>-convergence result, in the strongly repulsive limit, on the functional rescaled by the logarithm of the coupling parameter. As a corollary, we prove that the energy of minimisers concentrates on an area-minimising surface of dimension <span>\\(n-2\\)</span>, while the curvature of minimisers converges to a solution of the London equation.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00205-023-01933-1.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00205-023-01933-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 1

Abstract

We consider the Abelian Yang–Mills–Higgs functional, in the non-self dual scaling, on a complex line bundle over a closed Riemannian manifold of dimension \(n\ge 3\). This functional is the natural generalisation of the Ginzburg–Landau model for superconductivity to the non-Euclidean setting. We prove a \(\Gamma \)-convergence result, in the strongly repulsive limit, on the functional rescaled by the logarithm of the coupling parameter. As a corollary, we prove that the energy of minimisers concentrates on an area-minimising surface of dimension \(n-2\), while the curvature of minimisers converges to a solution of the London equation.

复线束上的Yang-Mills-Higgs泛函:\(\Gamma \) -收敛性和伦敦方程
我们考虑了在闭黎曼流形\(n\ge 3\)上的复线束上的非自对偶标度的Abelian Yang-Mills-Higgs泛函。这个泛函是金兹堡-朗道超导模型在非欧几里得环境下的自然推广。我们证明了在强排斥极限下,用耦合参数的对数重新标称的泛函具有\(\Gamma \) -收敛性。作为推论,我们证明了最小化的能量集中在一个尺寸为\(n-2\)的面积最小化曲面上,而最小化的曲率收敛于伦敦方程的一个解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信