Smoothed empirical likelihood analysis of partially linear quantile regression models with missing response variables

IF 1.4 4区 数学 Q2 STATISTICS & PROBABILITY
Xiaofeng Lv, Rui Li
{"title":"Smoothed empirical likelihood analysis of partially linear quantile regression models with missing response variables","authors":"Xiaofeng Lv,&nbsp;Rui Li","doi":"10.1007/s10182-013-0210-4","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we consider the estimation and inference of the parameters and the nonparametric part in partially linear quantile regression models with responses that are missing at random. First, we extend the normal approximation (NA)-based methods of Sun (2005) to the missing data case. However, the asymptotic covariance matrices of NA-based methods are difficult to estimate, which complicates inference. To overcome this problem, alternatively, we propose the smoothed empirical likelihood (SEL)-based methods. We define SEL statistics for the parameters and the nonparametric part and demonstrate that the limiting distributions of the statistics are Chi-squared distributions. Accordingly, confidence regions can be obtained without the estimation of the asymptotic covariance matrices. Monte Carlo simulations are conducted to evaluate the performance of the proposed method. Finally, the NA- and SEL-based methods are applied to real data.</p></div>","PeriodicalId":55446,"journal":{"name":"Asta-Advances in Statistical Analysis","volume":"97 4","pages":"317 - 347"},"PeriodicalIF":1.4000,"publicationDate":"2013-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10182-013-0210-4","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asta-Advances in Statistical Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10182-013-0210-4","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 21

Abstract

In this paper, we consider the estimation and inference of the parameters and the nonparametric part in partially linear quantile regression models with responses that are missing at random. First, we extend the normal approximation (NA)-based methods of Sun (2005) to the missing data case. However, the asymptotic covariance matrices of NA-based methods are difficult to estimate, which complicates inference. To overcome this problem, alternatively, we propose the smoothed empirical likelihood (SEL)-based methods. We define SEL statistics for the parameters and the nonparametric part and demonstrate that the limiting distributions of the statistics are Chi-squared distributions. Accordingly, confidence regions can be obtained without the estimation of the asymptotic covariance matrices. Monte Carlo simulations are conducted to evaluate the performance of the proposed method. Finally, the NA- and SEL-based methods are applied to real data.

缺失响应变量的部分线性分位数回归模型的平滑经验似然分析
本文研究了响应随机缺失的部分线性分位数回归模型中参数和非参数部分的估计与推理。首先,我们将Sun(2005)基于正态近似(NA)的方法扩展到缺失数据的情况。然而,基于na的方法的渐近协方差矩阵难以估计,这使得推理变得复杂。为了克服这个问题,我们提出了基于平滑经验似然(SEL)的方法。我们定义了参数和非参数部分的SEL统计量,并证明了统计量的极限分布是卡方分布。因此,无需估计渐近协方差矩阵即可得到置信区域。通过蒙特卡罗仿真来评价该方法的性能。最后,将基于NA和sel的方法应用于实际数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Asta-Advances in Statistical Analysis
Asta-Advances in Statistical Analysis 数学-统计学与概率论
CiteScore
2.20
自引率
14.30%
发文量
39
审稿时长
>12 weeks
期刊介绍: AStA - Advances in Statistical Analysis, a journal of the German Statistical Society, is published quarterly and presents original contributions on statistical methods and applications and review articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信