Investigation on electrocatalytic performance and material degradation of an N-doped graphene-MOF nanocatalyst in emulated electrochemical environments†

Niladri Talukder, Yudong Wang, Bharath Babu Nunna, Xiao Tong, Jorge Anibal Boscoboinik and Eon Soo Lee
{"title":"Investigation on electrocatalytic performance and material degradation of an N-doped graphene-MOF nanocatalyst in emulated electrochemical environments†","authors":"Niladri Talukder, Yudong Wang, Bharath Babu Nunna, Xiao Tong, Jorge Anibal Boscoboinik and Eon Soo Lee","doi":"10.1039/D3IM00044C","DOIUrl":null,"url":null,"abstract":"<p>To develop graphene-based nanomaterials as reliable catalysts for electrochemical energy conversion and storage systems (<em>e.g.</em> PEM fuel cells, metal–air batteries, <em>etc.</em>), it is imperative to critically understand their performance changes and correlated material degradation processes under different operational conditions. In these systems, hydrogen peroxide (H<small><sub>2</sub></small>O<small><sub>2</sub></small>) is often an inevitable byproduct of the catalytic oxygen reduction reaction, which can be detrimental to the catalysts, electrodes, and electrolyte materials. Here, we studied how the electrocatalytic performance changes for a heterogeneous nanocatalyst named nitrogen-doped graphene integrated with a metal–organic framework (N-G/MOF) by the effect of H<small><sub>2</sub></small>O<small><sub>2</sub></small>, and correlated the degradation process of the catalyst in terms of the changes in elemental compositions, chemical bonds, crystal structures, and morphology. The catalyst samples were treated with five different concentrations of H<small><sub>2</sub></small>O<small><sub>2</sub></small> to emulate the operational conditions and examined to quantify the changes in electrocatalytic performances in an alkaline medium, elemental composition and chemical bonds, crystal structure, and morphology. The electrocatalytic performance considerably declined as the H<small><sub>2</sub></small>O<small><sub>2</sub></small> concentration reached above 0.1 M. The XPS analyses suggest the formation of different oxygen functional groups on the material surface, the breakdown of the material's C–C bonds, and a sharp decline in pyridinic-N functional groups due to gradually harsher H<small><sub>2</sub></small>O<small><sub>2</sub></small> treatments. In higher concentrations, the H<small><sub>2</sub></small>O<small><sub>2</sub></small>-derived radicals altered the crystalline and morphological features of the catalyst.</p><p>Keywords: Nitrogen-doped graphene-based electrocatalyst; Metal–organic framework; Hydrogen peroxide effect on catalyst; Electrocatalytic performance; Material degradation.</p>","PeriodicalId":29808,"journal":{"name":"Industrial Chemistry & Materials","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2023/im/d3im00044c?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial Chemistry & Materials","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2023/im/d3im00044c","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

To develop graphene-based nanomaterials as reliable catalysts for electrochemical energy conversion and storage systems (e.g. PEM fuel cells, metal–air batteries, etc.), it is imperative to critically understand their performance changes and correlated material degradation processes under different operational conditions. In these systems, hydrogen peroxide (H2O2) is often an inevitable byproduct of the catalytic oxygen reduction reaction, which can be detrimental to the catalysts, electrodes, and electrolyte materials. Here, we studied how the electrocatalytic performance changes for a heterogeneous nanocatalyst named nitrogen-doped graphene integrated with a metal–organic framework (N-G/MOF) by the effect of H2O2, and correlated the degradation process of the catalyst in terms of the changes in elemental compositions, chemical bonds, crystal structures, and morphology. The catalyst samples were treated with five different concentrations of H2O2 to emulate the operational conditions and examined to quantify the changes in electrocatalytic performances in an alkaline medium, elemental composition and chemical bonds, crystal structure, and morphology. The electrocatalytic performance considerably declined as the H2O2 concentration reached above 0.1 M. The XPS analyses suggest the formation of different oxygen functional groups on the material surface, the breakdown of the material's C–C bonds, and a sharp decline in pyridinic-N functional groups due to gradually harsher H2O2 treatments. In higher concentrations, the H2O2-derived radicals altered the crystalline and morphological features of the catalyst.

Keywords: Nitrogen-doped graphene-based electrocatalyst; Metal–organic framework; Hydrogen peroxide effect on catalyst; Electrocatalytic performance; Material degradation.

Abstract Image

n掺杂石墨烯- mof纳米催化剂在模拟电化学环境下的电催化性能及材料降解研究
为了开发石墨烯基纳米材料作为电化学能量转换和存储系统(如PEM燃料电池、金属-空气电池等)的可靠催化剂,必须批判性地了解其性能变化以及不同操作条件下相关的材料降解过程。在这些系统中,过氧化氢(H2O2)通常是催化氧还原反应不可避免的副产品,它可能对催化剂、电极和电解质材料有害。本文研究了H2O2作用下氮掺杂石墨烯-金属有机骨架(N-G/MOF)非均相纳米催化剂电催化性能的变化,并从元素组成、化学键、晶体结构和形貌的变化等方面对催化剂的降解过程进行了关联。催化剂样品用五种不同浓度的H2O2处理以模拟操作条件,并对碱性介质中电催化性能、元素组成和化学键、晶体结构和形态的变化进行量化研究。当H2O2浓度超过0.1 m时,电催化性能明显下降。XPS分析表明,随着H2O2浓度的逐渐加重,材料表面形成了不同的氧官能团,材料的C-C键被破坏,吡啶- n官能团急剧下降。在较高浓度下,h2o2衍生的自由基改变了催化剂的结晶和形态特征。关键词:氮掺杂石墨烯基电催化剂;有机框架;过氧化氢对催化剂的影响;Electrocatalytic性能;材料的降解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Industrial Chemistry & Materials
Industrial Chemistry & Materials chemistry, chemical engineering, functional materials, energy, etc.-
自引率
0.00%
发文量
0
期刊介绍: Industrial Chemistry & Materials (ICM) publishes significant innovative research and major technological breakthroughs in all aspects of industrial chemistry and materials, with a particular focus on the important innovation of low-carbon chemical industry, energy and functional materials. By bringing researchers, engineers, and policymakers into one place, research is inspired, challenges are solved and the applications of science and technology are accelerated. The global editorial and advisory board members are valued experts in the community. With their support, the rigorous editorial practices and dissemination ensures your research is accessible and discoverable on a global scale. Industrial Chemistry & Materials publishes: ● Communications ● Full papers ● Minireviews ● Reviews ● Perspectives ● Comments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信