Designing active and stable Ir-based catalysts for the acidic oxygen evolution reaction

Zijie Lin, Tanyuan Wang and Qing Li
{"title":"Designing active and stable Ir-based catalysts for the acidic oxygen evolution reaction","authors":"Zijie Lin, Tanyuan Wang and Qing Li","doi":"10.1039/D3IM00070B","DOIUrl":null,"url":null,"abstract":"<p>The widespread application of polymer electrolyte membrane water electrolyzers (PEMWEs) remains a tough challenge to date, as they rely on the use of highly scarce iridium (Ir) with insufficient catalytic performance for the oxygen evolution reaction (OER). Therefore, exploring the degradation and activation mechanism of Ir-based catalysts during the OER and searching for highly efficient Ir-based catalysts are essential to achieve large-scale hydrogen production with PEMWEs. This minireview briefly describes the adsorbate evolution mechanism and lattice oxygen oxidation mechanism for Ir-based catalysts to complete the OER process. Then, the valence change of Ir during the OER is discussed to illustrate the origin of the favorable stability of Ir-based catalysts. After that, different modification strategies for IrO<small><sub>2</sub></small>, such as elemental doping, surface engineering, atom utilization enhancing, and support engineering, are summarized in the hopes of finding some commonalities for improving performance. Finally, the perspectives for the development of Ir-based OER catalysts in PEMWEs are presented.</p><p>Keywords: Polymer electrolyte membrane water electrolyzers; Oxygen evolution reaction; Iridium catalysts; Degradation mechanism; Hydrogen production.</p>","PeriodicalId":29808,"journal":{"name":"Industrial Chemistry & Materials","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2023/im/d3im00070b?page=search","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial Chemistry & Materials","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2023/im/d3im00070b","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The widespread application of polymer electrolyte membrane water electrolyzers (PEMWEs) remains a tough challenge to date, as they rely on the use of highly scarce iridium (Ir) with insufficient catalytic performance for the oxygen evolution reaction (OER). Therefore, exploring the degradation and activation mechanism of Ir-based catalysts during the OER and searching for highly efficient Ir-based catalysts are essential to achieve large-scale hydrogen production with PEMWEs. This minireview briefly describes the adsorbate evolution mechanism and lattice oxygen oxidation mechanism for Ir-based catalysts to complete the OER process. Then, the valence change of Ir during the OER is discussed to illustrate the origin of the favorable stability of Ir-based catalysts. After that, different modification strategies for IrO2, such as elemental doping, surface engineering, atom utilization enhancing, and support engineering, are summarized in the hopes of finding some commonalities for improving performance. Finally, the perspectives for the development of Ir-based OER catalysts in PEMWEs are presented.

Keywords: Polymer electrolyte membrane water electrolyzers; Oxygen evolution reaction; Iridium catalysts; Degradation mechanism; Hydrogen production.

Abstract Image

设计活性稳定的ir基酸性析氧催化剂
聚合物电解质膜水电解槽(PEMWEs)的广泛应用仍然是一个严峻的挑战,因为它们依赖于使用高度稀缺的铱(Ir),而催化出氧反应(OER)的性能不足。因此,探索ir基催化剂在OER过程中的降解和活化机理,寻找高效的ir基催化剂是实现PEMWEs大规模制氢的必要条件。本文简要介绍了ir基催化剂完成OER过程的吸附物演化机理和晶格氧氧化机理。然后,讨论了Ir在OER过程中的价态变化,以说明Ir基催化剂具有良好稳定性的原因。在此基础上,总结了元素掺杂、表面工程、原子利用增强和支持工程等不同的IrO2改性策略,以期找到提高性能的共性。最后,展望了在PEMWEs中ir基OER催化剂的发展前景。关键词:聚合物电解质膜式水电解槽;析氧反应;铱催化剂;降解机制;制氢。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Industrial Chemistry & Materials
Industrial Chemistry & Materials chemistry, chemical engineering, functional materials, energy, etc.-
自引率
0.00%
发文量
0
期刊介绍: Industrial Chemistry & Materials (ICM) publishes significant innovative research and major technological breakthroughs in all aspects of industrial chemistry and materials, with a particular focus on the important innovation of low-carbon chemical industry, energy and functional materials. By bringing researchers, engineers, and policymakers into one place, research is inspired, challenges are solved and the applications of science and technology are accelerated. The global editorial and advisory board members are valued experts in the community. With their support, the rigorous editorial practices and dissemination ensures your research is accessible and discoverable on a global scale. Industrial Chemistry & Materials publishes: ● Communications ● Full papers ● Minireviews ● Reviews ● Perspectives ● Comments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信