Catalytic conversion network for lignocellulosic biomass valorization: a panoramic view

Shenyu Wang, Aohua Cheng, Fanhua Liu, Junjie Zhang, Tao Xia, Xiang Zeng, Wei Fan and Ying Zhang
{"title":"Catalytic conversion network for lignocellulosic biomass valorization: a panoramic view","authors":"Shenyu Wang, Aohua Cheng, Fanhua Liu, Junjie Zhang, Tao Xia, Xiang Zeng, Wei Fan and Ying Zhang","doi":"10.1039/D2IM00054G","DOIUrl":null,"url":null,"abstract":"<p>Efficient utilization of lignocellulosic biomass to substitute for fossil resources is an effective way to promote the sustainable development of current society. Numerous lignocellulose valorization routes for the production of value-added chemicals and fuels have been explored. Herein, we overview the catalytic reaction routes, reaction types and key steps involved in the selective preparation of various important products from lignocellulose. The information can facilitate the development of robust and selective catalytic systems to address the challenges in the major reaction steps. We present four catalytic conversion route maps starting from cellulose (including 5-hydroxylfurfural, HMF), hemicellulose and lignin, respectively. The reaction route for the important platform molecules of HMF and furfural, passing through critical intermediates to value-added chemicals and aviation fuels, is also highlighted. It provides a clear and concise panorama for people interested in this field and facilitates identifying the products or processes of interest with up-to-date research developments. We also put forward the current issues for the large-scale valorization of lignocellulose and the possible resolution strategies, focusing on the rational design of active and robust heterogeneous catalysts.</p><p>Keywords: Biomass; Lignocellulose valorization; Catalytic conversion network; Reaction routes; Renewable chemicals.</p>","PeriodicalId":29808,"journal":{"name":"Industrial Chemistry & Materials","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2023/im/d2im00054g?page=search","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial Chemistry & Materials","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2023/im/d2im00054g","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Efficient utilization of lignocellulosic biomass to substitute for fossil resources is an effective way to promote the sustainable development of current society. Numerous lignocellulose valorization routes for the production of value-added chemicals and fuels have been explored. Herein, we overview the catalytic reaction routes, reaction types and key steps involved in the selective preparation of various important products from lignocellulose. The information can facilitate the development of robust and selective catalytic systems to address the challenges in the major reaction steps. We present four catalytic conversion route maps starting from cellulose (including 5-hydroxylfurfural, HMF), hemicellulose and lignin, respectively. The reaction route for the important platform molecules of HMF and furfural, passing through critical intermediates to value-added chemicals and aviation fuels, is also highlighted. It provides a clear and concise panorama for people interested in this field and facilitates identifying the products or processes of interest with up-to-date research developments. We also put forward the current issues for the large-scale valorization of lignocellulose and the possible resolution strategies, focusing on the rational design of active and robust heterogeneous catalysts.

Keywords: Biomass; Lignocellulose valorization; Catalytic conversion network; Reaction routes; Renewable chemicals.

Abstract Image

木质纤维素生物质增值的催化转化网络:全景视图
高效利用木质纤维素生物质替代化石资源是促进当今社会可持续发展的有效途径。已经探索了许多用于生产增值化学品和燃料的木质纤维素增值路线。本文综述了木质纤维素选择性制备各种重要产物的催化反应路线、反应类型和关键步骤。这些信息可以促进稳健和选择性催化系统的发展,以解决主要反应步骤中的挑战。我们提出了四种催化转化路线图,分别从纤维素(包括5-羟基糠醛,HMF),半纤维素和木质素开始。HMF和糠醛的重要平台分子通过关键中间体转化为增值化学品和航空燃料的反应路线也得到了强调。它为对这一领域感兴趣的人提供了一个清晰而简洁的全景,并有助于识别最新研究发展中感兴趣的产品或过程。提出了目前木质纤维素大规模增值存在的问题和可能的解决策略,重点是合理设计具有活性和鲁棒性的多相催化剂。关键词:生物质;木质纤维素稳定物价;催化转化网络;反应路线;可再生的化学物质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Industrial Chemistry & Materials
Industrial Chemistry & Materials chemistry, chemical engineering, functional materials, energy, etc.-
自引率
0.00%
发文量
0
期刊介绍: Industrial Chemistry & Materials (ICM) publishes significant innovative research and major technological breakthroughs in all aspects of industrial chemistry and materials, with a particular focus on the important innovation of low-carbon chemical industry, energy and functional materials. By bringing researchers, engineers, and policymakers into one place, research is inspired, challenges are solved and the applications of science and technology are accelerated. The global editorial and advisory board members are valued experts in the community. With their support, the rigorous editorial practices and dissemination ensures your research is accessible and discoverable on a global scale. Industrial Chemistry & Materials publishes: ● Communications ● Full papers ● Minireviews ● Reviews ● Perspectives ● Comments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信