Simulation of Thin-Film Cells With a Multiscale Quantum-Mechanical/Electromagnetic Method

IF 1.8 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Lei Zhang;Hui Zeng;Zhenhong Fan;Da-Zhi Ding
{"title":"Simulation of Thin-Film Cells With a Multiscale Quantum-Mechanical/Electromagnetic Method","authors":"Lei Zhang;Hui Zeng;Zhenhong Fan;Da-Zhi Ding","doi":"10.1109/JMMCT.2023.3241633","DOIUrl":null,"url":null,"abstract":"This article studies the surface plasmon-enhanced effect of metal nanoparticles (NPs) in thin-film cells by using a semi-classical multiscale quantum-mechanical/electromagnetic (QM/EM) method. The QM/EM method establishes a relationship between classical electromagnetic environment and full quantum-mechanical photovoltaics with quantized vector magnetic potential on the boundary. In our theoretical framework, the EM region is solved by Maxwell equation with method of moments (MoM), and the QM region is solved by density-functional tight-binding (DFTB) theory with the nonequilibrium Green's function. The proposed method has predicted that metal NPs could generate surface plasmon enhancement and substantially improve the photovoltaic performance of thin-film cells. By comparison, we investigated the influences of different NP materials, distributions and drop-casting ratios on the current-voltage characteristics. The simulated results provide a comprehensive understanding of photoelectric interaction, which can be utilized to improve the power conversion efficiency (PCE) of thin-film cells by fast optimization design.","PeriodicalId":52176,"journal":{"name":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10035288/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This article studies the surface plasmon-enhanced effect of metal nanoparticles (NPs) in thin-film cells by using a semi-classical multiscale quantum-mechanical/electromagnetic (QM/EM) method. The QM/EM method establishes a relationship between classical electromagnetic environment and full quantum-mechanical photovoltaics with quantized vector magnetic potential on the boundary. In our theoretical framework, the EM region is solved by Maxwell equation with method of moments (MoM), and the QM region is solved by density-functional tight-binding (DFTB) theory with the nonequilibrium Green's function. The proposed method has predicted that metal NPs could generate surface plasmon enhancement and substantially improve the photovoltaic performance of thin-film cells. By comparison, we investigated the influences of different NP materials, distributions and drop-casting ratios on the current-voltage characteristics. The simulated results provide a comprehensive understanding of photoelectric interaction, which can be utilized to improve the power conversion efficiency (PCE) of thin-film cells by fast optimization design.
薄膜电池的多尺度量子力学/电磁法模拟
本文采用半经典多尺度量子力学/电磁(QM/EM)方法研究了金属纳米颗粒在薄膜电池中的表面等离子体增强效应。QM/EM方法建立了经典电磁环境与边界上量子化矢量磁势的全量子力学光伏之间的关系。在我们的理论框架中,EM区域用矩量法求解麦克斯韦方程(MoM), QM区域用非平衡格林函数求解密度泛函紧结合(DFTB)理论。该方法预测了金属NPs可以产生表面等离子体增强,并大大提高薄膜电池的光伏性能。通过比较,我们研究了不同NP材料、分布和浇铸比对电流-电压特性的影响。仿真结果提供了对光电相互作用的全面理解,可用于通过快速优化设计来提高薄膜电池的功率转换效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
27
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信