{"title":"The 1H, 15N and 13C resonance assignments of the C-terminal domain of Serpine mRNA binding protein 1 (SERBP1)","authors":"Antoine Baudin, Xiaoping Xu, David S. Libich","doi":"10.1007/s12104-021-10046-3","DOIUrl":null,"url":null,"abstract":"<div><p>SERBP1 is a multifunctional mRNA-binding protein that has been shown to play a regulatory role in a number of biological processes such as thrombosis, DNA damage repair, and the cellular response to nutrient deprivation. Additionally, SERBP1 is upregulated in glioblastoma, leukemia as well as liver, prostrate and ovarian cancers where it has been implicated in metastatic disease and poor patient outcomes. SERBP1 binds target mRNA, stabilizing and regulating the post-translational expression of the transcript. Since SERBP1 lacks canonical RNA-binding motifs such as RRM domains or zinc fingers, its target recognition and binding mechanisms are not well understood. Recent reports suggest that it is capable of recognizing both RNA sequence motifs and structured domains. Here we report the production and purification of the intrinsically disordered C-terminal domain of SERBP1, the assignment of the <sup>1</sup>H, <sup>13</sup>C, <sup>15</sup>N backbone resonances of the protein by solution-state NMR, and secondary structure predictions. We show that the protein is not entirely disordered and identify an α-helix that was stable under the experimental conditions. This work is the first step toward understanding the structural basis underpinning the molecular mechanisms of SERBP1 functions, particularly interactions with mRNA targets.</p></div>","PeriodicalId":492,"journal":{"name":"Biomolecular NMR Assignments","volume":"15 2","pages":"461 - 466"},"PeriodicalIF":0.8000,"publicationDate":"2021-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12104-021-10046-3.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecular NMR Assignments","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s12104-021-10046-3","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 2
Abstract
SERBP1 is a multifunctional mRNA-binding protein that has been shown to play a regulatory role in a number of biological processes such as thrombosis, DNA damage repair, and the cellular response to nutrient deprivation. Additionally, SERBP1 is upregulated in glioblastoma, leukemia as well as liver, prostrate and ovarian cancers where it has been implicated in metastatic disease and poor patient outcomes. SERBP1 binds target mRNA, stabilizing and regulating the post-translational expression of the transcript. Since SERBP1 lacks canonical RNA-binding motifs such as RRM domains or zinc fingers, its target recognition and binding mechanisms are not well understood. Recent reports suggest that it is capable of recognizing both RNA sequence motifs and structured domains. Here we report the production and purification of the intrinsically disordered C-terminal domain of SERBP1, the assignment of the 1H, 13C, 15N backbone resonances of the protein by solution-state NMR, and secondary structure predictions. We show that the protein is not entirely disordered and identify an α-helix that was stable under the experimental conditions. This work is the first step toward understanding the structural basis underpinning the molecular mechanisms of SERBP1 functions, particularly interactions with mRNA targets.
期刊介绍:
Biomolecular NMR Assignments provides a forum for publishing sequence-specific resonance assignments for proteins and nucleic acids as Assignment Notes. Chemical shifts for NMR-active nuclei in macromolecules contain detailed information on molecular conformation and properties.
Publication of resonance assignments in Biomolecular NMR Assignments ensures that these data are deposited into a public database at BioMagResBank (BMRB; http://www.bmrb.wisc.edu/), where they are available to other researchers. Coverage includes proteins and nucleic acids; Assignment Notes are processed for rapid online publication and are published in biannual online editions in June and December.