Boundary Integral Equation Method for Electrostatic Field Prediction in Piecewise-Homogeneous Electrolytes

IF 1.8 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Christopher K. Pratt;John C. Young;Robert J. Adams;Stephen D. Gedney
{"title":"Boundary Integral Equation Method for Electrostatic Field Prediction in Piecewise-Homogeneous Electrolytes","authors":"Christopher K. Pratt;John C. Young;Robert J. Adams;Stephen D. Gedney","doi":"10.1109/JMMCT.2022.3230664","DOIUrl":null,"url":null,"abstract":"This article presents a boundary integral equation formulation for the prediction of electrostatic fields, potentials, and currents in regions comprising piecewise-homogeneous electrolytes. The integral equation is formulated in terms of the boundary electric potentials and normal electric current densities and is discretized using the locally corrected Nyström method. The method is validated by comparison to analytic solution data for both linear and nonlinear canonical problems. Solution convergence is investigated with respect to mesh discretization and basis order.","PeriodicalId":52176,"journal":{"name":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","volume":"8 ","pages":"22-30"},"PeriodicalIF":1.8000,"publicationDate":"2022-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/9993723/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 1

Abstract

This article presents a boundary integral equation formulation for the prediction of electrostatic fields, potentials, and currents in regions comprising piecewise-homogeneous electrolytes. The integral equation is formulated in terms of the boundary electric potentials and normal electric current densities and is discretized using the locally corrected Nyström method. The method is validated by comparison to analytic solution data for both linear and nonlinear canonical problems. Solution convergence is investigated with respect to mesh discretization and basis order.
分段均质电解质中静电场预测的边界积分方程法
本文提出了一个边界积分方程公式,用于预测分段均质电解质区域内的静电场、电位和电流。积分方程用边界电位和法向电流密度表示,并用局部校正Nyström方法进行离散化。通过与线性和非线性正则问题解析解数据的比较,验证了该方法的有效性。研究了该方法在网格离散化和基阶方面的收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
27
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信