Dispersion Analysis of Metasurfaces With Hexagonal Lattices With Higher Symmetries

IF 6.9 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Shiyi Yang;Oskar Zetterstrom;Francisco Mesa;Oscar Quevedo-Teruel
{"title":"Dispersion Analysis of Metasurfaces With Hexagonal Lattices With Higher Symmetries","authors":"Shiyi Yang;Oskar Zetterstrom;Francisco Mesa;Oscar Quevedo-Teruel","doi":"10.1109/JMW.2023.3312165","DOIUrl":null,"url":null,"abstract":"This article investigates the dispersion properties of metasurfaces with hexagonal lattices, including potential higher symmetric configurations. We explore the relationships between the periodicity of hexagonal lattices and their dispersion properties, paying special attention to how hexagonal periodic structures can be analyzed with either a hexagonal primitive unit cell or a rectangular supercell. We also study the possibility of introducing higher symmetries into hexagonal periodic structures, including glide symmetry and mirrored half-turn symmetry. To complement and validate the analysis, we designed a graded-index Luneburg lens antenna with a dielectric-filled hexagonal holey structure working in the K\n<inline-formula><tex-math>$_{\\mathrm{a}}$</tex-math></inline-formula>\n-band. The antenna generates steerable highly directive beams from 26 GHz to 30 GHz, which corroborates our analysis. Our findings provide valuable insight into the dispersion properties of hexagonal-lattice metasurfaces and demonstrate the feasibility of using such structures in practical applications.","PeriodicalId":93296,"journal":{"name":"IEEE journal of microwaves","volume":"3 4","pages":"1154-1165"},"PeriodicalIF":6.9000,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/9171629/10271404/10256254.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE journal of microwaves","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10256254/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 1

Abstract

This article investigates the dispersion properties of metasurfaces with hexagonal lattices, including potential higher symmetric configurations. We explore the relationships between the periodicity of hexagonal lattices and their dispersion properties, paying special attention to how hexagonal periodic structures can be analyzed with either a hexagonal primitive unit cell or a rectangular supercell. We also study the possibility of introducing higher symmetries into hexagonal periodic structures, including glide symmetry and mirrored half-turn symmetry. To complement and validate the analysis, we designed a graded-index Luneburg lens antenna with a dielectric-filled hexagonal holey structure working in the K $_{\mathrm{a}}$ -band. The antenna generates steerable highly directive beams from 26 GHz to 30 GHz, which corroborates our analysis. Our findings provide valuable insight into the dispersion properties of hexagonal-lattice metasurfaces and demonstrate the feasibility of using such structures in practical applications.
高对称六方晶格超表面的色散分析
本文研究了具有六方晶格的超表面的色散性质,包括潜在的更高对称构型。我们探索了六方晶格的周期性与其色散性质之间的关系,特别关注如何用六方原晶胞或矩形超晶胞分析六方周期结构。我们还研究了在六边形周期结构中引入更高对称性的可能性,包括滑移对称性和镜像半圈对称性。为了补充和验证分析,我们设计了一种渐变折射率Luneburg透镜天线,该天线具有在K$_{\mathrm{a}}$波段工作的介质填充六边形孔结构。该天线产生26 GHz至30 GHz的可操纵高指向波束,这证实了我们的分析。我们的发现为六边形晶格超表面的色散特性提供了有价值的见解,并证明了在实际应用中使用这种结构的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.70
自引率
0.00%
发文量
0
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信