{"title":"Variability in Specific Absorption Rate From Variation in Tissue Properties","authors":"Khadijeh Masumnia-Bisheh;Cynthia Furse","doi":"10.1109/JMMCT.2022.3216642","DOIUrl":null,"url":null,"abstract":"This study evaluates the variance of specific absorption rate (SAR) due to expected variance in the dielectric properties of tissues in a 3D anatomical human head model exposed to a half-wave dipole antenna at 835 and 1900 MHz. Stochastic finite difference time domain (S-FDTD) is applied to calculate variations in the local SAR, and the 1- and 10-gram averaged SAR values. These are also compared at 835 MHz to variations found from Monte Carlo FDTD. It is found that for both frequencies dielectric property variance results in a variance of peak 1- or 10-gram SAR of approximately 30% to 55% of the mean SAR, depending on the frequency. These results show that to reach 95% confidence with the calculated SAR values for evaluating exposure guidelines, statistical variations in tissue electrical properties must be taken into account.","PeriodicalId":52176,"journal":{"name":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2022-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/9927358/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This study evaluates the variance of specific absorption rate (SAR) due to expected variance in the dielectric properties of tissues in a 3D anatomical human head model exposed to a half-wave dipole antenna at 835 and 1900 MHz. Stochastic finite difference time domain (S-FDTD) is applied to calculate variations in the local SAR, and the 1- and 10-gram averaged SAR values. These are also compared at 835 MHz to variations found from Monte Carlo FDTD. It is found that for both frequencies dielectric property variance results in a variance of peak 1- or 10-gram SAR of approximately 30% to 55% of the mean SAR, depending on the frequency. These results show that to reach 95% confidence with the calculated SAR values for evaluating exposure guidelines, statistical variations in tissue electrical properties must be taken into account.