Joint Optimization of the Partition and Scheduling of DNN Tasks in Computing and Network Convergence

Zhenyu Zhang;Qin Li;Lu Lu;Da Guo;Yong Zhang
{"title":"Joint Optimization of the Partition and Scheduling of DNN Tasks in Computing and Network Convergence","authors":"Zhenyu Zhang;Qin Li;Lu Lu;Da Guo;Yong Zhang","doi":"10.1109/LNET.2023.3260567","DOIUrl":null,"url":null,"abstract":"Computing and network convergence (CNC) is a new network architecture based on computing evolution and network integration. Deep Neural Networks (DNNs) inference imposes a heavy computational burden on mobile devices. In this letter, an end-edge-network-cloud (EENC) collaborative inference architecture is proposed to reduce the DNN inference latency and maximize the computing potential of the CNC. A heuristic Centralized DNN Task Offloading algorithm (CDTO) is proposed for the fine-grained partition and scheduling problems of multiple DNN inference tasks. The CDTO algorithm can significantly reduce the makespan of DNN inference tasks and effectively improve the concurrent capacity of DNN tasks.","PeriodicalId":100628,"journal":{"name":"IEEE Networking Letters","volume":"5 2","pages":"130-134"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Networking Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10086042/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Computing and network convergence (CNC) is a new network architecture based on computing evolution and network integration. Deep Neural Networks (DNNs) inference imposes a heavy computational burden on mobile devices. In this letter, an end-edge-network-cloud (EENC) collaborative inference architecture is proposed to reduce the DNN inference latency and maximize the computing potential of the CNC. A heuristic Centralized DNN Task Offloading algorithm (CDTO) is proposed for the fine-grained partition and scheduling problems of multiple DNN inference tasks. The CDTO algorithm can significantly reduce the makespan of DNN inference tasks and effectively improve the concurrent capacity of DNN tasks.
计算与网络融合中DNN任务划分与调度的联合优化
计算与网络融合(CNC)是一种基于计算进化和网络集成的新型网络架构。深度神经网络(DNN)推理给移动设备带来了沉重的计算负担。在这封信中,提出了一种端边缘网络云(EENC)协同推理架构,以减少DNN推理延迟,最大限度地发挥CNC的计算潜力。针对多个DNN推理任务的细粒度划分和调度问题,提出了一种启发式的集中式DNN任务卸载算法(CDTO)。CDTO算法可以显著缩短DNN推理任务的完成时间,有效提高DNN任务的并发能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信