Testing the Pattern of AKT Activation by Variational Parameter Estimation

Daniel Kaschek;Frauke Henjes;Max Hasmann;Ulrike Korf;Jens Timmer
{"title":"Testing the Pattern of AKT Activation by Variational Parameter Estimation","authors":"Daniel Kaschek;Frauke Henjes;Max Hasmann;Ulrike Korf;Jens Timmer","doi":"10.1109/LLS.2016.2615081","DOIUrl":null,"url":null,"abstract":"Dynamic modeling has become one of the pillars of understanding complex biological systems from a mechanistic point of view. In particular, ordinary differential equations are frequently used to model the dynamics of the interacting states, e.g., molecular species in cell signaling pathways. The equations typically contain many unknown parameters, such as reaction rates and initial conditions, but also time-dependent parameters, i.e., input functions driving the system. Both are \n<italic>a priori</i>\n unknown and need to be estimated from experimental, time-resolved data. Here, we discuss an application of indirect optimal control methods for input estimation and parameter estimation in the \n<italic>mammalian target of rapamycin</i>\n (mTOR) signaling. Whereas the direct identification and quantification of different active mTOR complexes, e.g., \n<italic>mTOR complex</i>\n \n<inline-formula> <tex-math>$\\textit {2}$ </tex-math></inline-formula>\n (mTORC2), is only possible by highly challenging experiments, the mathematical framework allows to reconstruct its dynamics by solving an appropriate Euler–Lagrange equation based on Pontryagin’s maximum principle. The inherently large search space underlying this approach allows to test specific biological hypotheses about the activation of \n<italic>protein kinase B</i>\n (AKT) by mTORC2 and to reject an alternative model with high statistical power. Hereby, we identify a minimal model that has AKT threonine phosphorylation as a prerequisite for serine phosphorylation by mTORC2. Based on this model, the activation of mTORC2 is predicted to be inhibited by drugs, targeting the receptors of the ERBB receptor family.","PeriodicalId":87271,"journal":{"name":"IEEE life sciences letters","volume":"2 2","pages":"13-16"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/LLS.2016.2615081","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE life sciences letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/7740930/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Dynamic modeling has become one of the pillars of understanding complex biological systems from a mechanistic point of view. In particular, ordinary differential equations are frequently used to model the dynamics of the interacting states, e.g., molecular species in cell signaling pathways. The equations typically contain many unknown parameters, such as reaction rates and initial conditions, but also time-dependent parameters, i.e., input functions driving the system. Both are a priori unknown and need to be estimated from experimental, time-resolved data. Here, we discuss an application of indirect optimal control methods for input estimation and parameter estimation in the mammalian target of rapamycin (mTOR) signaling. Whereas the direct identification and quantification of different active mTOR complexes, e.g., mTOR complex $\textit {2}$ (mTORC2), is only possible by highly challenging experiments, the mathematical framework allows to reconstruct its dynamics by solving an appropriate Euler–Lagrange equation based on Pontryagin’s maximum principle. The inherently large search space underlying this approach allows to test specific biological hypotheses about the activation of protein kinase B (AKT) by mTORC2 and to reject an alternative model with high statistical power. Hereby, we identify a minimal model that has AKT threonine phosphorylation as a prerequisite for serine phosphorylation by mTORC2. Based on this model, the activation of mTORC2 is predicted to be inhibited by drugs, targeting the receptors of the ERBB receptor family.
用变分参数估计法检测AKT的激活模式
动态建模已经成为从机械的角度理解复杂生物系统的支柱之一。特别是,常微分方程经常用于模拟相互作用状态的动力学,例如细胞信号通路中的分子物种。这些方程通常包含许多未知参数,如反应速率和初始条件,但也包含时间相关参数,即驱动系统的输入函数。两者都是先验未知的,需要从实验的、时间分辨的数据中进行估计。在此,我们讨论了用于输入估计和参数估计的间接最优控制方法在哺乳动物雷帕霉素(mTOR)信号传导靶标中的应用。然而,直接识别和量化不同的活性mTOR配合物,例如mTOR配合物$\textit {2}$ (mTORC2),只能通过极具挑战性的实验来实现,数学框架允许通过基于庞特里亚金极大值原理求解适当的欧拉-拉格朗日方程来重建其动力学。该方法固有的大搜索空间允许测试关于mTORC2激活蛋白激酶B (AKT)的特定生物学假设,并拒绝具有高统计能力的替代模型。因此,我们确定了一个最小模型,AKT苏氨酸磷酸化是mTORC2磷酸化丝氨酸的先决条件。基于该模型,预测靶向ERBB受体家族受体的药物会抑制mTORC2的激活。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信