Physical Cause and Impact of Negative Capacitance Effect in Ferroelectric P(VDF-TrFE) Gate Stack and Its Application to Landau Transistor

Khoirom Johnson Singh;Nitanshu Chauhan;Anand Bulusu;Sudeb Dasgupta
{"title":"Physical Cause and Impact of Negative Capacitance Effect in Ferroelectric P(VDF-TrFE) Gate Stack and Its Application to Landau Transistor","authors":"Khoirom Johnson Singh;Nitanshu Chauhan;Anand Bulusu;Sudeb Dasgupta","doi":"10.1109/OJUFFC.2022.3172665","DOIUrl":null,"url":null,"abstract":"A novel approach to overcome Boltzmann’s tyranny is to exploit the negative capacitance (NC) effect found naturally in many ferroelectric (FE) materials. We apply a set of coupled equations based on electrostatics, Kirchoff’s law, and a well-calibrated Ginzburg-Landau-Khalatnikov technology computer-aided design (TCAD) model to simulate an organic FE poly(vinylidene fluoride- <italic>co</italic> -trifluoroethylene) [P(VDF-TrFE)]-based resistor metal-FE-metal (<inline-formula> <tex-math notation=\"LaTeX\">$R$ </tex-math></inline-formula>-MFM) series circuit and a Landau transistor (LT) exhibiting sub-60 mV/decade subthreshold swing (<italic>SS</italic>). TCAD simulation parameters for P(VDF-TrFE) are derived from the reported experimental polarization versus voltage characteristics using Landau theory. Unlike oxide FEs, the P(VDF-TrFE)-based <inline-formula> <tex-math notation=\"LaTeX\">$R$ </tex-math></inline-formula>-MFM series circuit can exploit the NC effect at a lower supply voltage (<inline-formula> <tex-math notation=\"LaTeX\">$V_{G}$ </tex-math></inline-formula>) of ±0.5 V with little energy dissipation of ~2.7 fJ through <inline-formula> <tex-math notation=\"LaTeX\">$R$ </tex-math></inline-formula>. Our simulation results show an 84.89% reduction in the P(VDF-TrFE)’s coercivity concerning the oxide FE. We show that the underlying mechanism of the NC effect is directly related to FE polarization (FE-<inline-formula> <tex-math notation=\"LaTeX\">$P$ </tex-math></inline-formula>) switching. The NC effect occurs only when the FE-<inline-formula> <tex-math notation=\"LaTeX\">$P$ </tex-math></inline-formula> is in the negative curvature of the P(VDF-TrFE)’s free energy landscape. The NC effect is explored in terms of <inline-formula> <tex-math notation=\"LaTeX\">$V_{G}$ </tex-math></inline-formula>, FE thickness, domain variations, <inline-formula> <tex-math notation=\"LaTeX\">$R$ </tex-math></inline-formula>, and dipole switching resistivity. The influence of <inline-formula> <tex-math notation=\"LaTeX\">$R$ </tex-math></inline-formula> variation on the NC time (<inline-formula> <tex-math notation=\"LaTeX\">$\\delta t$ </tex-math></inline-formula>) is investigated at 100 kHz. We can observe that <inline-formula> <tex-math notation=\"LaTeX\">$\\delta t$ </tex-math></inline-formula> and <inline-formula> <tex-math notation=\"LaTeX\">$R$ </tex-math></inline-formula> have a linear relationship. As <inline-formula> <tex-math notation=\"LaTeX\">$R$ </tex-math></inline-formula> approaches zero, we determined that the inherent FE-<inline-formula> <tex-math notation=\"LaTeX\">$P$ </tex-math></inline-formula> switching speed exclusively restricts the NC effect. Finally, a 32 nm P(VDF-TrFE) LT provides a minimal <italic>SS</italic> of 23.39 mV/decade, 74.92% less than its CMOS counterpart. Therefore, the proposed organic MFM stack could open the path for developing beyond CMOS transistor technology operating in sub-60 mV/decade.","PeriodicalId":73301,"journal":{"name":"IEEE open journal of ultrasonics, ferroelectrics, and frequency control","volume":"2 ","pages":"55-64"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/9292640/9674185/09768803.pdf","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of ultrasonics, ferroelectrics, and frequency control","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/9768803/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

A novel approach to overcome Boltzmann’s tyranny is to exploit the negative capacitance (NC) effect found naturally in many ferroelectric (FE) materials. We apply a set of coupled equations based on electrostatics, Kirchoff’s law, and a well-calibrated Ginzburg-Landau-Khalatnikov technology computer-aided design (TCAD) model to simulate an organic FE poly(vinylidene fluoride- co -trifluoroethylene) [P(VDF-TrFE)]-based resistor metal-FE-metal ( $R$ -MFM) series circuit and a Landau transistor (LT) exhibiting sub-60 mV/decade subthreshold swing (SS). TCAD simulation parameters for P(VDF-TrFE) are derived from the reported experimental polarization versus voltage characteristics using Landau theory. Unlike oxide FEs, the P(VDF-TrFE)-based $R$ -MFM series circuit can exploit the NC effect at a lower supply voltage ( $V_{G}$ ) of ±0.5 V with little energy dissipation of ~2.7 fJ through $R$ . Our simulation results show an 84.89% reduction in the P(VDF-TrFE)’s coercivity concerning the oxide FE. We show that the underlying mechanism of the NC effect is directly related to FE polarization (FE- $P$ ) switching. The NC effect occurs only when the FE- $P$ is in the negative curvature of the P(VDF-TrFE)’s free energy landscape. The NC effect is explored in terms of $V_{G}$ , FE thickness, domain variations, $R$ , and dipole switching resistivity. The influence of $R$ variation on the NC time ( $\delta t$ ) is investigated at 100 kHz. We can observe that $\delta t$ and $R$ have a linear relationship. As $R$ approaches zero, we determined that the inherent FE- $P$ switching speed exclusively restricts the NC effect. Finally, a 32 nm P(VDF-TrFE) LT provides a minimal SS of 23.39 mV/decade, 74.92% less than its CMOS counterpart. Therefore, the proposed organic MFM stack could open the path for developing beyond CMOS transistor technology operating in sub-60 mV/decade.
铁电P(VDF-TrFE)栅极堆负电容效应的物理原因及影响及其在朗道晶体管中的应用
一种克服玻尔兹曼暴政的新方法是利用许多铁电材料中自然存在的负电容效应。我们应用一组基于静电学、基尔霍夫定律的耦合方程,以及一个校准良好的ginzberg -Landau- khalatnikov技术计算机辅助设计(TCAD)模型,模拟了一个基于有机FE聚偏氟乙烯- co -三氟乙烯[P(VDF-TrFE)]的电阻金属-FE-金属($R$ - mfm)系列电路和一个表现出低于60 mV/ 10年亚阈值摆幅(SS)的朗道晶体管(LT)。利用朗道理论,从已有的实验极化电压特性推导出了P(VDF-TrFE)的TCAD仿真参数。与氧化物FEs不同,基于P(VDF-TrFE)的$R$ -MFM系列电路可以在±0.5 V的较低电源电压($V_{G}$)下发挥NC效应,并且通过$R$的能量损耗很小,约2.7 fJ。模拟结果表明,P(VDF-TrFE)的矫顽力随氧化物FE的增加而降低了84.89%。我们发现NC效应的潜在机制与FE极化(FE- $P$)开关直接相关。NC效应仅在FE- P$处于P(VDF-TrFE)自由能曲线的负曲率时才会发生。从V_{G}$、FE厚度、畴变化、R$和偶极子开关电阻率等方面探讨了NC效应。研究了100 kHz时R变化对NC时间(t)的影响。我们可以观察到$\ t$和$R$具有线性关系。当R$接近零时,我们确定固有的FE- P$开关速度完全限制NC效果。最后,32 nm P(VDF-TrFE) LT提供23.39 mV/ 10年的最小SS,比CMOS低74.92%。因此,所提出的有机MFM堆叠可以为超越工作在低于60 mV/ 10年的CMOS晶体管技术的发展开辟道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信