Recent progress in strong spin-orbit coupling van der Waals materials and their heterostructures for spintronic applications

Shuyuan Shi , Xinran Wang , Yaru Zhao, Weisheng Zhao
{"title":"Recent progress in strong spin-orbit coupling van der Waals materials and their heterostructures for spintronic applications","authors":"Shuyuan Shi ,&nbsp;Xinran Wang ,&nbsp;Yaru Zhao,&nbsp;Weisheng Zhao","doi":"10.1016/j.mtelec.2023.100060","DOIUrl":null,"url":null,"abstract":"<div><p>The growing need for miniaturization in semiconductor devices has led to an increasing interest in layered van der Waals (vdW) materials, which offer intriguing physics, atomically thin and smooth layers, excellent mechanical properties and board application prospects for developing future high-performance devices. This review provides a comprehensive discussion of recent progress of vdW materials and their heterostructures widely studied in spintronics. Firstly, the background of emerging vdW materials in spintronic research is presented. Next, the research progress of the vdW materials with strong spin-orbit coupling (SOC) is discussed, including topological insulators, transition-metal dichalcogenides, vdW ferromagnetic materials, and vdW antiferromagnetic materials. For each material type, the spin-related phenomena, recent development of device applications and material growth methods are discussed in detail. Finally, the review concludes by discussing the future challenges and research prospects of emerging large-SOC vdW materials and their heterostructures, with the goal of inspiring deeper investigations and advancing spintronic device innovations.</p></div>","PeriodicalId":100893,"journal":{"name":"Materials Today Electronics","volume":"6 ","pages":"Article 100060"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Electronics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772949423000360","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The growing need for miniaturization in semiconductor devices has led to an increasing interest in layered van der Waals (vdW) materials, which offer intriguing physics, atomically thin and smooth layers, excellent mechanical properties and board application prospects for developing future high-performance devices. This review provides a comprehensive discussion of recent progress of vdW materials and their heterostructures widely studied in spintronics. Firstly, the background of emerging vdW materials in spintronic research is presented. Next, the research progress of the vdW materials with strong spin-orbit coupling (SOC) is discussed, including topological insulators, transition-metal dichalcogenides, vdW ferromagnetic materials, and vdW antiferromagnetic materials. For each material type, the spin-related phenomena, recent development of device applications and material growth methods are discussed in detail. Finally, the review concludes by discussing the future challenges and research prospects of emerging large-SOC vdW materials and their heterostructures, with the goal of inspiring deeper investigations and advancing spintronic device innovations.

强自旋轨道耦合范德华材料及其异质结构在自旋电子中的应用研究进展
半导体器件小型化的需求日益增长,导致人们对层状范德瓦尔斯(vdW)材料的兴趣日益增加,这种材料提供了有趣的物理特性,原子薄而光滑的层,优异的机械性能和开发未来高性能器件的电路板应用前景。本文综述了自旋电子学中广泛研究的vdW材料及其异质结构的最新进展。首先,介绍了自旋电子学研究中新兴的vdW材料的背景。其次,讨论了具有强自旋轨道耦合(SOC)的vdW材料的研究进展,包括拓扑绝缘体、过渡金属二硫族化合物、vdW铁磁材料和vdW反铁磁材料。对于每种材料类型,详细讨论了自旋相关现象,器件应用的最新发展和材料生长方法。最后,讨论了新兴的大soc vdW材料及其异质结构的未来挑战和研究前景,以期激发更深入的研究和推进自旋电子器件的创新。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信