Virtual strain loading method for low temperature cohesive failure of asphalt binder

Heyang Ding , Hainian Wang , Ziye Ma , Zhen Leng , Ponan Feng , Tangjie Wang , Xin Qu
{"title":"Virtual strain loading method for low temperature cohesive failure of asphalt binder","authors":"Heyang Ding ,&nbsp;Hainian Wang ,&nbsp;Ziye Ma ,&nbsp;Zhen Leng ,&nbsp;Ponan Feng ,&nbsp;Tangjie Wang ,&nbsp;Xin Qu","doi":"10.1016/j.jreng.2022.09.004","DOIUrl":null,"url":null,"abstract":"<div><p>Cohesive failure is one of the primary reasons for low-temperature cracking in asphalt pavements. Understanding the micro-level mechanism is crucial for comprehending cohesive failure behavior. However, previous literature has not fully reported on this aspect. Moreover, there has been insufficient attention given to the correlation between macroscopic and microscopic failures. To address these issues, this study employed molecular dynamics simulation to investigate the low-temperature tensile behavior of asphalt binder. By applying virtual strain, the separation work during asphalt binder tensile failure was calculated. Additionally, a correlation between macroscopic and microscopic tensile behaviors was established. Specifically, a quadrilateral asphalt binder model was generated based on SARA fractions. By applying various combinations of virtual strain loading, the separation work at tensile failure was determined. Furthermore, the impact of strain loading combinations on separation work was analyzed. Normalization was employed to establish the correlation between macroscopic and microscopic tensile behaviors. The results indicated that thermodynamic and classical mechanical indicators validated the reliability of the tetragonal asphalt binder model. The strain loading combination consists of strain rate and loading number. All strain loading combinations exhibited the similar tensile failure characteristic. The critical separation strain was hardly influenced by strain loading combination. However, increasing strain rate significantly enhanced both the maximum traction stress and separation work of the asphalt binder. An increment in the loading number led to a decrease in separation work. The virtual strain combination of 0.5%-80 provided a more accurate representation of the actual asphalt's tensile behavior trend.</p></div>","PeriodicalId":100830,"journal":{"name":"Journal of Road Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Road Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2097049823000409","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Cohesive failure is one of the primary reasons for low-temperature cracking in asphalt pavements. Understanding the micro-level mechanism is crucial for comprehending cohesive failure behavior. However, previous literature has not fully reported on this aspect. Moreover, there has been insufficient attention given to the correlation between macroscopic and microscopic failures. To address these issues, this study employed molecular dynamics simulation to investigate the low-temperature tensile behavior of asphalt binder. By applying virtual strain, the separation work during asphalt binder tensile failure was calculated. Additionally, a correlation between macroscopic and microscopic tensile behaviors was established. Specifically, a quadrilateral asphalt binder model was generated based on SARA fractions. By applying various combinations of virtual strain loading, the separation work at tensile failure was determined. Furthermore, the impact of strain loading combinations on separation work was analyzed. Normalization was employed to establish the correlation between macroscopic and microscopic tensile behaviors. The results indicated that thermodynamic and classical mechanical indicators validated the reliability of the tetragonal asphalt binder model. The strain loading combination consists of strain rate and loading number. All strain loading combinations exhibited the similar tensile failure characteristic. The critical separation strain was hardly influenced by strain loading combination. However, increasing strain rate significantly enhanced both the maximum traction stress and separation work of the asphalt binder. An increment in the loading number led to a decrease in separation work. The virtual strain combination of 0.5%-80 provided a more accurate representation of the actual asphalt's tensile behavior trend.

沥青粘结剂低温粘结破坏的虚拟应变加载方法
粘结失效是沥青路面低温开裂的主要原因之一。理解微观机制对于理解内聚失效行为至关重要。然而,以往的文献并没有充分报道这方面的情况。此外,对宏观失效和微观失效之间的相关性关注不足。为了解决这些问题,本研究采用分子动力学模拟来研究沥青结合料的低温拉伸行为。应用虚拟应变,计算了沥青结合料拉伸破坏过程中的分离功。此外,还建立了宏观和微观拉伸行为之间的相关性。具体而言,基于SARA分数生成了四边形沥青结合料模型。通过应用虚拟应变载荷的各种组合,确定了拉伸失效时的分离功。此外,还分析了应变-载荷组合对分离工作的影响。采用归一化来建立宏观和微观拉伸行为之间的相关性。结果表明,热力学和经典力学指标验证了四方沥青结合料模型的可靠性。应变-载荷组合由应变速率和载荷次数组成。所有应变-载荷组合都表现出相似的拉伸破坏特征。临界分离应变几乎不受应变-载荷组合的影响。然而,增加应变速率显著提高了沥青结合料的最大牵引应力和分离功。装载次数的增加导致分离功的减少。0.5%-80的虚拟应变组合更准确地表示了实际沥青的拉伸行为趋势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信